
A AMAXIMAL FLOW APPROACH TO DYNAMIC ROUTING IN COMMUNICATION NET--ETC(UJ
MAY G0 M4 JOOKOVSAT, A SEGALL NOOG IA-75-C-I18a3

U UCLASSIFIED LIDS-R-988 IA.3**flfl**fl.f2

LU-

III1 L 4 IIIILit VMICROCOP11 S 1

1111.25 llI 4 111.

MICROCOPY RESOLUTION TEST CHART

118001"l Supported AV
ARPA Co~twct NOGOI 4.75-C-i83
OS Number 82933

ONR C0xtc N0001477XC-0332
OSP Number 85552,LEVEIL

SC

A MAXIMAL FLOW APPROACH TO DYNAMIC
ROUTING IN COMMUNICATION NETWORKS

Medo Jodorkowdy
Adrin Segll

Laboratory for Information and Decision Systems f' Pdn@bSiss mdl ld" I
Formerly ,V,

Electronic Systems Laboratory

MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASSACHUSETTS 02139

8o6 3 03

%ECUPITY CLASSIFICATION OF THIS PAGE ("&Are Date Entered)

REPORT DOCUMENTATION PAGE BEFORE COMPLETIOGS
. 'REPORT NUMBER 12. GbVT ACCESSION 3 RECIPIENT'S CATALOG NUMBER

A. ITE (ndSubite' * YP OF REPORT a PERIOD COVERED

SFlo App o tA Dynamc RoutingNUME
Communication Networks

. A WOR A UNIT NUMBERS

Laboratory for Information and Decision Systems Program Code No. 5T0
LONR Identifying No. 049-383

Defense Advanced Research Projects Agency // MyU

14. MONITORING AGENCY NAME a ADDRESS(II dilfo~nmt from, Contronlnnh Offce) IS. 'SECURITY CLASS. (of t/te reor)

Office of Naval ResearchInformation Systems Program /JodUnolassified

ArlintonCde 43 VA 2217 /, / .'I...I I
'
S..

' ECLASSIFICATON
IDOWNGRADINGs c E u L

C CFdriae 37 46#1HE5CDUL3

16. PISTR IUTION STATEMENT (oN tAMe Repo REt) "W UM-

Approved for public release; distribution unlimited.

m17. DISTRIUTION STATEMENT (of the ebefIac eettited gn BloNo .0 It dli.ent m Repo3t)

IS. SUPPLEMENTARY NOTES

. KEY WORDS (Continue on esereetdc ih necetes Agl identciy yblock n1mbe)

za. A fIRACT (Conilirme n ,ewereo side I! ncoeay lind Idontity by block numbe,)

This work presents a new approach for building the feedback solution for
the minimum delay dynamic message routing problem for single destination
networks.

The approach fully exploits the special structure of the constraint matrice
obtained in the dynamic state space model suggested in previous works,

by transforming every linear program arising from the necessary conditions,
into a maimal weighted flow problem.

Arigtn A 21

1D, DIS 173BU TIOS N O (of hs IS4o-660T

17 ITIUIN SEMNT (o2-f.Od60 SthRIT abAstrICacO OPtre InI BlAck 20,.. #1t dil tfrm eprt

7m

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

-- Taking advantage of several properties concerning the networks correspond-
ing to the linear programming problems, all theorems regarding certain
simplifying characteristics of the feedback solution that apply in the case
of single-destination networks with all unity weightings in the cost
functional are reproved in a simplified and more straightforward manner.

A compact algorithm for the construction of the feedback solution is
presented, the algorithm being implementable on networks of reasonable size.

A method for obtaining all solutions of the linear programming problems
required by the algorithm, based on the application of linear programming
techniques in networks is provided. The method is implemented by a computer
program and several examples are run to test its applicability. IgorCi

In addition, a deep geometrical insight to every step of the lgorithm
is given by deriving the explicit set of inequalities defining the problem
constraint figure in the state-velocity space.

The complexity of the problem is also analyzed, being exponential in
the number of the network nodes, thus giving an idea of the maximal network
size for which a full feedback solution can be obtained under the available
computational resources.

I Accesslon For

DI'C TAB
.%ounc ed

Juitil ic-.tion

Bye.

TL AI I

SErCURITY CL.ASSIFlICATION Of
r

THIS PA09'llAMh DO" RA~tll /

INSTRUCTIONS FOR PREPARATION OF REPORT DOCUMENTATION PAGE

RESPONSIBILITY. The controlling DeD office will be responsible for completion of tho Report Documentation Page, DD Form 1473, in
all technical reports prepared by or for DoD organizations.

QASS.IFICATION. Since this Report Documentation Page, DD Form 1473, is used in preparing announcements, bibliographies, and data
banks, it should" be unclassified if possible. If a classification is required, identify the classified items on the page by the appropriate
symbol.

COMPLETION GUIDE

General. Make Blocks 1, 4. S, 6, 7. 11, 13, 15, and 16 agree with the corresponding information on the report cover. Leave
Blocks 2 and 3 blank.

Block I. Report Number. Enter the unique alphanumeric report number shown on the cover.

Block 2. Government Accession No. Leave Blank. This space is for use by the Defense Documentation Center.

Block 3. Recipient's Catalog Number. Leave blank. This space is for the use of the report recipient to assist in future
retrieval of th-ocument.

Bljck 4. Title and Subtitle. Enter the title in all capital letters exactly as it appears on the publication. Titles should be
unclassified whenever possible. Write out the English equivalent for Greek letters and mathematical symbols in the title (see
"Abstracting Scientific and Technical Reports of Defense-sponsored RDT/E,"AD-667 000). If the report has a subtitle, this subtitle
should follow the main title, be separated by a comma or semicolon if appropriate, and be initially capitalized. If a publication has a
title in a foreign language, translate the title into English and follow the English translation with the title in the original language.
Make every effort to simplify the title before publication.

Block 5. Type of Report and Period Covered. Indicate here whether report is interim, final, etc., and, if applicable, inclusive
dates of period covered, such as the life of a contract covered in a final contractor report.

Block 6. Performing Organization Report Number. Only numbers other than the official report number shown in Block 1, such
as series numbers for in-house reports or a contractor/grantee number assigned by hin, will be placed in this space. If no such numbers
are used, leave this space blank,

Block 7. Author(s). Include corresponding information from the report cover. Give the name(s) of the author(s) in conventional
* order (fore xample. John R. Doe or, if atithor prefers, J. Robert Doe). In addition, list the affiliation of an author if it differs from that

of the performing organization.

Block 8. Contract or Grant Number(s). For a contractor or grantee report, enter the complete contract or grant number(s) under
which the work-reported was accomplished. Leave blank in in-house reports.

Block 9. Performing Organization Name and Address. For in-house reports enter the name and address, including office symbol,
of the perforing activity. For contractor or grantee reports enter the name and address of the contractor or grantee who prepared the
report and identify the appropriate corporate division, school, laboratory, etc., of the author. List city, state, and ZIP Code.

Block 10. Program Element, Project. Task Area, and Work Unit Numbers. Enter here the numrber code from the applicable
Department of Defense form, such as the DD Form 1498, "Research and Technology Work Unit Summary" or the DD Form 1634.
"Research and Development Planning Summary," which identifies the program element, project, task area, and work unit or equivalent

under which the work was authorized.

Btock 11. Controlling Office Name and Address. Enter the full, official name and address, including office symbol, of the
controlling office. (Equates to funding/sponsoring agency. For definition see DoD Directive 5200.20. "Distribution Statements on
Techn ical Documents. "')

Block 12. Report Date. Enter here the day, month, and year or month and year as shown on the cover.
Block 13. Number of Pages. Enter the total number of pages.

Block 14 Monitoring Agency Name and Address (if different from Controlling Office). For use when the controlling or funding
office does not directly administer a project, contract, or grant, but delegates the administrative responsibility to another organization.

Blocks 15 & ISO. Security Classification of the Report: Declassification/Downgrading Schedule of the Report. Enter in IS
the highest classification of the report. If appropriate, enter in ISa the declassification/downgrading schedule of the report, using the

abbreviations for declessification/downgrading schedules listed in paragraph 4-207 of DoD 5200. I-R.

Block 16 Distribution Statement of the Report. Insert here the applicable distribution statement of the report from DoD

Directive 5200.20, "Distribution Statements on Technical Documents."

Block 17. Distribution Statement (of the abstract entered in Block 20, if different from the distribution statement of the report).

Insert here the applicable distribution statement of the abstract from DoD Directive 5200.20, "Distribution Statements on Technical Doc-

ument s. " I

Block 18. Supplementary Notes. Enter information not Included elsewhere but useful, such as: Prepared in cooperation with

Trans atonof (or by) . . . Presented at conference of. . . To be published in . . .

Block 19 Key Words. Select terms or short phrases that identify the principal subjects covered in the report, and are

sufficiently specific and precise to be used as index entries for cataloging, conforming to standard terminology. The DoD "Thesaurus

of Engineering and Scientific Tens" (TEST), AD-672 000, can be helpful.

Block 20, Abstract. The abstract should be a brief (not to exceed 200 words) factual summary of the most significant informa-
tion contaih -inthe report. If possible, the abstract of a classified report should be unclassified and the abstract to an unclassified

report should consist of publicly- releasable information. If the report contains a significant bibliography or literature survey, mention

it here. For information on preparing abstracts see "Abstracting Scientific and Technical Reports of Defense-Sponsored RDT&E,"

AD-667 000. * ,

May, 1980 LIDS-R-988

A MAXIMAL PLOW APPROACH

TO DYNAMIC ROUTING IN COMMUNICATION NETWORKS

Mario Jodorkovsky and Adrian Segall

Department of Electrical Engineering
Technion - Israel Institute of Technology

Haifa, Israel

I

The work of A. Segall was performed on a consulting agreement with the
Laboratory for Information and Decision Systems at M.I.T., Cambridge,
Mass., and was supported in part by the Advanced Research Project Agency
of the U.S. Department of Defense (monitored by ONR) under Contract No.
N00014-75-C-1183, and in part by the Office of Naval Research under
Contract No. ONR/N00014-77-C-0532.

Contents

* I Abstract I

Glossary of Notations

SECTION 1 INTRODUCTION 2

SECTION 2: GENERAL DESCRIPTION OF THE ALGORITHM 13

A: Mathematical Statement of the Algorithm 13

B: All States Leave the Boundary 16

C: A Subset of States Leaves the Boundary 20

D: States Leaving the Boundary from Constructed
Feedback Control Regions 27

SECTION 3: THEORETICAL RESULTS 30

A: The Structure of the y-Constraint-Figure in
the Positive Orthant 6f the y-Space 30

B: Special Properties of the Feedback Solution for
4Single Destination Networks with all Unity

Weightings in the Cost Functional 38

SECTION 4: THE ALGORITHM 58

A: Statement of the Algorithm 58

B: The Method for Finding all Solutions to the
Linear Programming Problems 65

C: Example of Feedback Solution to the Dynamic
Routing Problem of a Single Destination Network
with all Unity Weightings in the Cost Functional 73

SECTION 5: CONCLUSIONS 94

Appendix A: Basic Concepts of Graph Theory, Maximal Flow and
Linear Programming in Networks 96

Appendix B: Computer Programs 104

References: 111

U. .----------

i Abstract

This work presents a new approach for building the feedback solution

for the minimum delay dynamic message routing problem for single destination

networks.

The approach fully exploits the special structure of the constraint

matrices obtained in the dynamic state space model suggested in previous works,

by transforming every linear program arising from the necessary conditions,

into a maximal weighted flow problem.

Taking advantage of several properties concerning the networks cor-

responding to the linear programming problems, all theorems regarding certain

simplifying characteristics of the feedback solution that apply in the case

of single-destination networks with all unity weightings in the cost functional

are reproved in a simplified and more straightforward manner.

*A compact algorithm for the construction of the feedback solution is

presented, the algorithm being implementable on networks of reasonable size.

A method for obtaining all solutions of the linear programming prob-

lems required by the algorithm, based on the application of linear programming

techniques in networks is provided. The method is implemented by a computer

*program and several examples are run to test its applicability.

In addition, a deep geometrical insight to every step of the algor-

ithm is given by deriving the explicit set of inequalities defining the prob-

lem constraint figure in the state-velocity space.

The complexity of the problem is also analyzed, being exponential in

the number of the network nodes, thus giving an idea of the maximal network

size for which a full feedback solution can be obtained under the available

- computational resources.

Glossary of Notations

Notation Definition

N - set of network nodes not including the destination node

L - set of network links

(i,k) - directed link from node i to node k

c ik - capacity of link (i,k)

x - vector of state variables

y - vector of velocity of state variables (-x)

u - vector of control variables

A - vector of costates

U - constraint figure in u-space

V - constraint figure in y-space

Ip - set of states travelling on interior arcs on [t ptp+)

"B - set of states travelling on boundary arcs on [t ,t)
P p p+1

L - set of states leaving the boundary at t backwards in timep p

R - feedback control region constructed from optimal traject-p

ories on the segment [t ptp 1)

Y p - set of operating points on [t p,t p+)

(XJ) - a minimal cut of the network

b. - demand for flow in node i
1

b S - supply of flow to the network

a - cardinality of Ip P

p - cardinality of L
p P

H(T) - the Hamiltonian at T

Co(.) - Convex Hull

E(i) - Collection of nodes k such that (i,k) c L

I(i) - Collection of nodes Z such that (1,i) c L

-2-

Section 1

INTRODUCTION

In [S1] a state space model for dynamic routing in data communication

networks is suggested. The main feature of this model is that it permits to

express the delay experienced by the messages travelling in the network in

terms of state and control variables describing the problem instead of models

based on queueing theory. The latter requires explicit closed-form expres-

sions for the average delays which can be found analytically only for very

special distributions and dependence relationships. The model also permits

to develop closed loop strategies for the message routing problem and can

handle transients by changing the routing policy in a dynamic fashion.

We begin by presenting a brief description of the model, simplified

to the case of single destination networks with zero inputs. Consider first

the following notations:

N = {1,2,...,n} is the set of network nodes (not including the destination node).

d = destination node.

L = {(i,k)/i,ke NUd and there is a direct link connecting i to kJ is the

set of network links.

E(i) - collection of nodes k such that (i,k)E L.

I(i) - collection of nodes X such that (2,i) e L.

All links of the network are taken to be unidirectional. Now, looking at the

network from a macroscopic point of view, the number of messages in each node

can be approximated by a continuous variable called "amount of traffic". The

state variables of the system are defined as follows:

-3-

x (t) amount of traffic at node i, at time t, where i N.

The control variables are defined as:

Uik(t) amount of traffic on link (ik) at time t where (i,k) e L.

The dynamics of the system are given by the equations describing the rate of

change of the contents of each node, namely:

i - UiA(t) + U zi(t) (1.1)
ke-E~i) teI(i)

The constraints are:

x (t) > o (l.2a)i

and

U: 0 < U. (t) < c (l.2b)
in - ik

where

ck capacity of link (i,k) in units of traffic/unit time, where

(i,k) e L.

The cost functional is taken to be the total delay experienced by the

messages travelling in the network, starting at a given time t and ending at

a time tf when the network is emptied, i e x (t = 0, V i e N. The ex-

pression for the above quantity is

t
J f x i(t)]dt • [1.3)

I to
t0

From now on, the various variables of the model will be represented in vector

form as follows: Denoting by x and u the respective concatenations of

state variables and controls, to every differential constraint in (1.1) cor-

responds a vector bi such that:

-4-

= b.u~1 -1-

where the vectors b. are the rows of the incidence matrix B of the network.

Now we express the linear optimal control problem with linear state

and control variable inequality constraints representing the data communication

network closed loop dynamic routing problem as stated in [Sl]:

Find the set of controls u as a function of time and state,

(4 u(t,x) , t '[toptf] I

that brings a given initial condition x(t) = x to the final condition

x(tf) = 0 and minimizes the cost functional (1.3) subject to the dynamics (1.1)

and to the state and control variable inequality constraints (1.2).

It is well know that in most optimal control problems it is quite

difficult to obtain feedback solutions. In our case however, owing to the

linearity of the problem, we can cover the entire state space with optimal

controls by solving just a comprehensive set of linear programs. In [SI]

an approach is suggested, by way of a simple example for constructing the

feedback solution. In [M], (M2] and (M3] this approach is elaborated upon

by developing the so called Constructive Dynamic Programming Algorithm for

the construction of the feedback solution. We proceed now with a brief pre-

sentation of the results obtained in the above works and the conceptual

lines of the Constructive Dynamic Programming Algorithm in order to provide

the reader with basic notions for the understanding of the present report.

We begin by presenting the necessary and sufficient conditions of optimality:

Theorem 1.1: (See [Ml, pp. 53-63] or [M2, pp. 13-20]).

Let the scalar functional h be defined as follows:

h((t),XCt)) i X T (tlt) X T (t)Bu~t).

A necessary and sufficient condition for the control law u*(') C U to be

optimal for problem (1.1) - (1.3) is that it minimizes h pointwise in time,

namely:

SA(t)Bu*(t) < XT(t)Bu(t) (1.4)

V u(t) eU, t C [to ,t f]

The costate X(t) is possibly a discontinuous function which satisfies the

following differential equations:

-dXi(t) = dt+dui.(t), V ieN t E[totf] (1.5)1 1 .

where componentwise dP . (t) satisfies the complementary slackness conditions:
-- 1

xi (t)dui (t) = 0 t E [tot f]

* (1.6)
dui(t) < 0 ieN

The terminal boundary condition for the costate differential equation is

A(tf) = 0 free , (1.7)

and the transversality condition is

T (tf)x(tf) = 0 (1.8)

Finally, the function h is everywhere continuous, i.e.:

h(u(t-),(t)) = h(u(t),X(t)), V t e (tot f]oIf
03 Theorem 1.1

From inequality (1.4) of the necessary and sufficient conditions we

see that th. optimal control function u*(.) is given at every time

t [ttf] by the solution of the linear program

u*Q(r) = ARGMIN(kT (r)Bu.(T)] (1.9)
u(r)cU

-6

From (1.9), and owing to the structure of the incidence matrix B, it follows

that there always exists an optimal solution for which the controls are piece-

wise constant in time. Moreover, since the equations governing the dynamics

of the system are linear, the corresponding state trajectories have piecewise

constant slopes. From the nature of the controls follows that every optimal

trajectory may be characterized by a finite number of parameters. These para-

meters are:

u(x) {u u , l...,AU f-l

and

T(x) {to t1 ... tf}

where U(x) is the sequence of optimal controls, T(x) is its associated

control switch time sequence, and the element u is the optimal control on
-p

, t [tpptp+l], c[,,.. -]

Moreover, every segment of an optimal trajectory, say the segment

[tp t,] is characterized by the following parameters:

B = {xi/xi(T) = 0 'T (t p,t p)1

and
I {xi/xi (T) > 0 T C[,t p+)}

that is, B and I are the sets of states travelling on boundary arcs andp p

interior arcs respectively on [t ,t). Now, the main fact following from
p p+l

the nature of the optimal trajectories is that the state space can be divided

into regions, each one being a convex polyhedral cone, when to every point of

a specific region corresponds an identical set of optimal controls. This is

exactly the reason that makes the construction of a feedback solution possible.

The above regions are referred to as "feedback control regions" and are de-

noted by R.

The problem is then to construct these feedback control regions, there-

by specifying the optimal control for every point of the state space. Now,

-7

considering the special geometric characterization of the feedback space, and

thinking in the spirit of dynamic programming, let us look at the optimal

trajectories backwards in time, beginning at tf. We will then see a sequence

of states leaving the boundary (perhaps two or more at a time) and varying

with constant slopes. Now, in (M2] it is proven that if any state variable,

say xi, is strictly positive on the last time interval (tf-1 1tf] of an

optimal trajectory, then Xi(tf) = 0. Moreover, by (1.6) we know that for

this state we have dui.('r) = 0 VT [tf-1 1tf] so that by (1.5) we obtain

X• .() -1 V T C [tf 1 ,tf].

Now suppose we had decided to check if there exist optimal traject-

ories in the state space with a specified set of states If. I travelling on

interior arcs in the last interval and with the remaining states travelling

on boundary arcs. Since we know the costates corresponding to the states in

If-i (by the above arguments) and using (1.9), these trajectories may be

found by solving the following linear program:

Find all:

* ARGMIN) ARGMIN X (-)biu

-u. tU t.I If-1 ucU x CIf-i

s.t. (1.10)

xi <0 X If-l

j Z0 Vx i e f.

The linear program (1.10) is called the constrained optimization prob-

lem and its solutions are trajectories only provided that there exist values

A Vxj c Bf.1 that satisfy the necessary conditions (l.S) - (1.6). Moreover,

the solutions of (1.10) provide optimal directions x Ct Ix in the

state space, defining the convex polyhedral cone corresponding to the feedback

-8-

control region characterized by the set of controls that solves (1.10). Now,

solving such a linear program for every possible combination of state vari-

ables leaving the boundary (backwards in time) at tf, we obtain feedback

control regions containing all points from which the origin can be reached

while maintaining sets If away from the boundary for all t < t In fact

the linear program (1.10) must be solved parametrically in time until the con-

trol changes. A change in the control defines a hyperplane passing through

the origin called "breakwall". By solving (1.10) until the cont-rol does not

break any more, we obtain a convex polyhedral cone divided by breakwalls into

a finite number of regions. Each region is characterized by a specific control

set and is referred to as "break feedback control region". The last region

constructed when solving (1.10), (i.e. when there are no more breaks in the

control) is called "non-break feedback control region".

In order to continue with the description of the algorithm, let us

introduce the following definition:

L = (xi/x i eB and x. is designated to leave the boundary

backward in time at t •
p

Now, in order to cover the whole state space with optimal controls,

we must take every feedback control region already constructed and allow every

possible combination of states still travelling on the boundary to leave it,

backward in time. In general, this step is performed as follows: Denoting

by R the feedback control region constructed from the optimal trajectories
p

on the segment [tpItp.1), pick a set of states of Bp, say L and parti-

tion Rp into "subregions" with respect to L p. The concept "subregion"

will be explained later. In order to let L leave the boundary at a certainp,

time t (called boundary junction time), we must find the costate values

i (tp) ixi eLp that allow the departure of the states in Lp from the

-9-

boundary while still being optimal. The above costate values are referred to

as "leave-the-boundary costate values". In geometrical terms the above co-

state values are found as follows:

By defining

y =-x -Bu

and

t C . n/ueU)

we can transform the linear program (1.9) into the f6llowing linear program

with decision vector y(r):

Y*(T) - ARGMAX T (T)Y(T) , (1.11)- y('r cV"

so that at t we can consider the hyperplane given by Z(t) = .J(t p)y

(called the Hamiltonian) tangent to V (called the y-constraint figure) that

provides points of tangency Y (called operational points) that are in factp

thq optimal directions in the state space defining the feedback control

region R p. Now in order to find the leave-the-boundary costates for L ,

we rotate the Hamiltonian around Y until we touch a surface of tangency? p
of Y called L p-positive face, having at least one point with

> 0 Y xi Lp

The new orientation of the Hamiltonian gives the desired leave-the-boundary

costates and now we solve a linear program of the form:

Find all:

u* ARGNIN ir)=i ARGMIN X i (')biu
ucU x. I xiCIp-i

z.p-lI.P

s.t.
i. 0 p-xi C Ip 1 I p ULp (1.12)

i "0 V xi C Bp I Bp /Lp

T C (tp,tp p

- 10 -

where (1.12) is again solved parametrically in time until the control breaks.

A subregion of R is the set of all points which, when taken as the

point of departure of L , result in a common set of optimal controls.~p

Clearly, such a partitioning of R may exist since to two distinct points in~p

R correspond different leave-the-boundary costates. In geometrical terms,

we could see the Hamiltonian rotating according to the change in the costates

when the states are travelling in R . When allowing Lp to leave thepp

boundary from distinct points of Rp, the Hamiltonian could meet different

L -positive faces, therefore giving different leave-the-boundary costate values.

p

The steps described for the construction of feedback control regions

form the so-called Constructive Dynamic Programming Algorithm as stated in

[Ml], [M2] and [M3]. Several features make the algorithm to be a conceptual

one rather than an implementable one. Among them, breaks in the optimal con-

trois, the existence of the subregions just pointed out, non-uniqueness of the

leave-the-boundary costates, and non-global optimality of certain sequences,

in addition to computational complexities associated with the algorithm, for

instance the problem of finding all solutions to linear programs. However,

it turns out that when dealing with single destination networks, and when no

priorities are assigned to the nodes (that is the cost functional has unity

weightings), many simplifications are attained, leading to a compact and imple-

mentable algorithm at least for moderate size networks.

In the present paper, we deal with the construction of the feedback

solution to the minimum delay dynamic message routing problem for single

destination networks, with zero inputs and when the cost functional has unity

weightings. The approach used to tackle the problem is based on the trans-

= - 11 -

formation of every linear program into a maximal weighted flow problem. The

transformation permits not only to develop a compact algorithm for obtaining

the feedback solution, but also to prove in a straightforward manner all the

simplifying features characterizing the feedback space, to develop a suitable

method for finding all the solutions to the linear programming problems and

to obtain explicitly the constraint figure in the state velocity space for

the geometrical understanding of the algorithm. The approach also permits

to gain insight into the complexity of the problem, thus providing the

essential information needed to estimate the maximal size of the networks for

which a complete feedback solution can be obtained under the available compu-

* tational resources.

One of the most interesting features of the algorithm presented here

is that although the efficiency of the method for obtaining all optimal solu-

tions to the linear programs is reduced by the high degeneracy of the problems

at hand, this is compensated by the fact that the higher the degree of

degeneracy, the lower is the number of linear programs that have to be solved.

Moreover, the algorithm requires to check all possible sequences of states

leaving the boundary backward in time or, in other words, all the possible

trajectories in the state space to insure the complete covering of the state

space. Again the higher the degree of degeneracy, the lower the number of

such sequences that have to be actually checked, thus obtaining a further

reduction in the complexity of the algorithm

The organization of the paper is as follows:

In Section 2, a general description of the algorithm is presented and

the transformation of the linear programs into maximal weighted flow problems

is introduced. Section 3 is devoted to the theoretical results obtained,

namely, the structure of the y-constraint figure and the proofs regarding all

- 12-

simplifying features of the feedback solution that apply in the case of single

destination networks.

In Section 4 the algorithm is presented in a compact form, the method

for obtaining all solutions to the linear programs is described and an example

of the construction of the feedback solution is given.

Finally, in Section 5 a brief discussion about the contributions of

this work is carried out and topics for further research in the area are

suggested.

0

.1

l,.

- 13 -

Section 2

GENERAL DESCRIPTION OF THE ALGORITHM

We begin with a brief preview of this section. In part A we present

a simplified mathematical description of the Constructive Dynamic Programming

Algorithm for building the feedback solution for the minimum delay dynamic

message routing problem for single destination networks with all unity weight-

ings in the cost functional. The algorithm consists of two steps. In the

first step, we construct feedback control regions resulting from the states

leaving the boundary at the final time (backward in time). The method to con-

struct these regions is depicted in parts B and C of this section. In the

second step, the rest of the state space is filled with optimal controls by

constructing the feedback control regions resulting from states leaving the

boundary, starting from already constructed regions. Part D of this section

deals with the construction of the above regions.

A. Mathematical Statement of the Algorithm

In [M2], the following properties associated with the Constructive

Dynamic Programming Algorithm are mentioned:

(a) Non-global optimality of certain sequences of state variables leaving

the boundary backwards in time.

(b) Non-uniqueness of leave-the-boundary costates.

(c) Subregions.

(d) Return of state variables to boundary backwards in time.

(e) Breaks in the optimal control between boundary junction times.

- 14 -

In [M3], a discussion of the above properties is presented in geo-

metrical terms. These problems complicate the formulation of a computational

scheme to implement the algorithm. However, as we will prove in Section 3 of

this paper, it turns out that these problems do not apply in the case of

single destination networks with all unity weightings in the cost functional,

thus permitting the following simplified statement of the algorithm:

Step 1: Solve the following series of linear programming problems:

Find all

* =ARG14IN ~ .=ARGMIN b bu
ucU xiCLf 1 ueu xi eLf-

5.t.

x' < 0 Vx L (2.1)

--=o VxcB-

j f-i

for all Lf C {xi/iCN}

when Nl denotes the set of nodes not including the destination.

Step 2: For all feedback control regions Rp

(a) Calculate the leave-the-boundary costate values Xi (tp) for all

x. c B, t being an arbitrary boundary junction time.1p p

(b) Solve the following series of linear programming problems:

Find all:

- ARGMIN x ii (t = ARGMIN X i(t p)biu
utu x.rI 1 utU x.sI 1 P -,- 1 p-I - 1 -i

s.t.

<0 Vxi Ip-1 (2.2)

x ._0 VxiXp. 1

for all L -B .P P

is -

As we said before, in the first step, feedback control regions result-

ing from the states leaving the boundary at tfV are constructed. Note that

in problem (2.1), the cost function has unity weightings. The reason is that

by Corollary 2 in (M2], Ai(tf) = 0 Vx eLf, and by the necessary and suffici-
i fi f

ent conditions for optimality (see [M2, pp. 13-17]), A.() = -1 Vxi eL

Moreover, since there are no breaks between boundary junction times, the co-

states corresponding to states in Lf are equal for all r £ (--,t) so that

at every time in this interval the cost function is the same after normaliza-

tion. From this fact follows that at every time in (--,tf) we obtain the

same set of optimal solutions to problem (2.1), so that the time plays no role

here. Notice also, that since each set of state variables leaving the boundary

corresponds to a globally optimal solution, every solution to (2.1) gives an

optimal trajectory.

In the second step, feedback control regions resulting from states

leaving the boundary from previously constructed regions are built. Since

there is only one subregion per region, it follows that from every point of

a given feedback control region, states leave the boundary with the same con-

trol set and therefore boundary junction times may be chosen arbitrarily. The

above reasoning together with the fact that the leave-the-boundary costates

are unique for a given boundary junction time, and with the fact that no state

variable is ever required by optimality to increase forward in time, justify

the simplifications obtained in the statement of the algorithm.

The first step is carried out as follows: First, the linear program

corresponding to the leave-the-boundary of all states is solved. Second, the

linear programs corresponding to (n-1) states leaving the boundary are solved

(when n is the number of nodes in the network not including the destination

node), and so on. As it will be shown later, this. way of solving the first

- 16 -

step enables in genelal a considerable reduction in the number of linear pro-

grams that have to be solved. Moreover, it will also be shown later that in

fact the second step does not require solving any linear programs, thus greatly

reducing the complexity of the algorithm.

B. All States Leave the Boundary

According to (2.1), the linear programming problem we have to solve for

this case is:

Find all:

u* = ARGMIN x *. = ARGMIN I b.u , (2.3)
udU ieN 1 ueU ieN

S.t.

x. < 0 YieN , (2.3a)
1 -

0 <ujk C jk
U = (2.3b)

Y (j,k) e L

Adding slack variables yi > 0 to the differential constraints (2.3a), prob-

lem (2.3) is transformed into:

Find all:

u* = ARGMIN E b.u = ARGMAX Z yi , (2.4)
ucL ieN " ucU icN

S.t. .

Xi+Yi . 0
Y i eN ,(2.4a)

Yi >0

0 < ujk <1cjk

U- (2.4b)

N o ,k) t L

Notice that in terms of the variable "y", the minimization problem (2.3) is

- 17 -

transformed into the maximization problem (2.4).

Suppose we are interested in finding only one solution to problem (2.4).

In order to do this, we transform the linear program (2.4) into the following

Maximal Flow Problem:

Maximize P = yi (2.5)ieN

S.t.
- u..+ I iYi

j E(i) k. kI (i),

Si • N (2.5a)

Yi > 0

0 < U Cjk

uEU (2.5b)

V (j,k) e L

The network corresponding to problem (2.5) is formed by adding to the

original network a new node called the "source", and n links with no capacity

constraints connecting the source with each node of the network (except for the

destination node). The slack variable "yi" represents the flow on the link

connecting the source with node i. F represents the total flow into (and out

of) the network (see Fig. 2.1).

F s - source node

Y 12kd - destination node

ind The links connectingthe different nodes
are omitted here to
avoid causing havoc
in the figure.

Figure 2.1 - Network representing Problem (2.5)

- 18 -

The transformation of the- linear program into a Maximal Flow Problem

is the fundamental step required for the proofs of the theorems regarding the

simplifying properties of the feedback solution. In Appendix A, we give basic

concepts of graph theory that we use in the development of the algorithm and

in the proofs of the theorems.

Now we continue with the solutions of problem (2.5). Our aim is to

find one solution to problem (2.5) by means of the Maximal Flow Algorithm and

then, without changing the flow achieved in the first optimal solution, to per-

form all possible pivots on the network in order to find all the remaining

optimal solutions of problem (2.5). Notice that since we are seeking extremal

optimal solutions, we require that the first one will be an "extended basic

optimal solution", (see Appendix A). In this way every solution obtained by

pivoting will also be an extended basic optimal solution, thus representing an

extremal point in the optimization space. It turns out that finding a first

"extended basic optimal solution" to problem (2.5) is trivial. From the fact

that the links corresponding to the "y" variables do not have capacity con-

straints follows that there exists only one minimal cut in the network (denoted

by (X,X)), and it is composed by all the links connecting the nodes with the

destination; thus:

K = (s,l,2,nl

= {d)

Then we choose as the first optimal solution the following flows:

Cid i C l(d)

yi =

0 otherwise

(2.6)

uid c id YieI(d)

u * uki 0 j cE(i), kcI(i)

/icN

- 19 -

and

F = Ci (2. 6a)
ii (d)id

Clearly, (2.6) is an "extended basic solution" if the variables yi

are declared basic and the remaining variables are declared non-basic. Notice

that if there is no direct connection between a node, say node i, and the

destination node, then the variable yi is basic with value zero. Now, since
4i

networks have generally many nodes not connected'directly with the destination

we are dealing here with linear programming problems of a high degree of

degeneracy. The degeneracy problem lowers the efficiency of linear program-

ming methods, however in our case, the higher the degree of degeneracy, the

lower is the number of linear programs we have to solve. This subject will

be discussed in Part C of this section.

Recall that after finding the first "extended optimal basic solution"

we are interested in maintaining the achieved flow to assure that every solu-

tion obtained by pivoting operations on the network will be optimal. But

maintaining maximal flow in the network implies that at every solution the

flow on the minimal cuts will be constant and maximal; thus, before pivot-

ing we can reduce the number of variables of the problem by transforming the

network to the one depicted in Figure 2.2:F b
F~s

Y2= 2 Yblb

-b -b -b -b

2 k

Figure 2.2 - Network configuration before the pivoting operation.

-20-

In Figure 2.2, b. accounts for the "demand" of flow in node i, and1

bs is the "supply" of flow to the network where:
s

b. = i I(d) N

1 I
0 otherwise

(2.7)b c Cid
s ieI(d)

Clearly, the reduction in the number of links facilitates the work of finding

all optimal solutions. After the reduction, the remaining optimal solutions

are found by means of the algorithm we present in Section 4.

C. A Subset of States Leaves the Boundary

In this case, we let a subset L C.{x./ic N}, such that L $ {xi/ic k)
f 1f 1

to leave the boundary at tf, while all other states B remain on the
f-i

boundary. By (2.1), the linear program to be solved is:

Find all:

* ARGMIN Z x. = ARGMIN b.u (2.8)
ueU xicL 1 ueU x -eL'

S.t.
< 0 V xi Lf

(2.8a)

--0 V x CBf-l

Transforming (2.8) into a Maximal Flow Problem, we have:

Maximize F Yi (2.9)

S.t.

- 21 -

- u..+) uki+Yi = 0 Lf

[u.. 7 i--o x i CBf Ir jcE(i) 'j kel(i)

(2.9a)

Yi > 0 x.E L f

0 Ju.k < cjk

U=

V(j k)eL

The network corresponding to problem (2.9) is formed by adding a new

node called the "source" to the original network, as in Part B of this section.

The difference here is that we add links without capacity constraints connect-

ing the source only with those nodes that correspond to state variables of Lf.

Nodes corresponding to state variables in B will be not connected with the

f-i

source. For example, Figure 2.3 shows a network with five nodes corresponding

to the case of two states leaving the boundary:

• F

Figure 2.3 - Example of network when only some states leave the boundary.

Our aim is, as in Part A, to find a first "extended basic optimal solu-

tion" to problem (2.9) and then by pivoting to find the remaining solutions.

But here we cannot obtain the first optimal solution by inspection since it is

- 22 -

not trivial to localize a minimal cut in the network. Moreover, we can obtain

an optimal solution by applying the Maximal Flow Algorithm to the network, but

this solution may not necessarily be an extended basic one. In order to over-

come this difficulty we present now two theorems and a corollary that will

assist us in developing a method to solve the problem when only some states

leave the boundary. In addition these results will show that in general there

are many combinations of state variables leaving the boundary for which it is

not necessary to solve a linear programming problem.

Theorem 2.1

Consider the following two linear programming (or Maximal Flow) problems:

Problem I

Maximize F- y.
if

x: xi E Li

s.t.

- u.. uki.y.o YxiEL
jeE(i) 'J kcI(i)

jeECi) 3 kEI(i) 1 f-I

Y > 0 V x. c L'

ueU

Problem II

Maximize F2 = Yi
Xi£Lf

- + y i =o V i f
jEc(i) 13 kpI(i)

uj- uki =0 Vx B f_
jcE(i) 3 kel(i) 1 f-I

Yi > 0 q4x.cLf

UCU
where L' CLiaxi/ieN)

- 23 -

If in problem I exists a basic optimal solution with (y. = 0,

Vx. e L/Lf}, then all the basic optimal solutions of II are basic optimal

solutions of I. Moreover, for the networks representing the above problems,

all minimal cuts of II are minimal cuts of I.

Proof

Take the solution of I with {yj 0, Yx e L/LfI. This solution

satisfies the constraints of II and clearly Max F1 = Max F2. Now take all
u£U ueU

basic optimal solutions of II and add new variables (y, .O, V x, e L'/L }
f f

as non-basic ones with value zero. Clearly all these solutions satisfy the

constraints of I. Moreover, since Max F1 = Max F2' and .the new variables

were added as non-basic ones, the solutions are also basic optimal solutions

of I.

For the corresponding networks, take now all solutions of I with

ly. = , x. £ L'/Lf . Removing the links corresponding to fy./x. e LLf}3 33

will give the network configuration of II, and hence all the minimal cuts of

II are minimal-cuts of I.

0 Theorem 2.1.

Theorem 2.2

With the notation of theorem 2.1, suppose that there is no set L'~f

such that LfC Lj, and that all basic optimal solutions for Lf are also

basic optimal solutions for L'. Then a minimal cut for Lf is (X,X), where
ff

X {CiN)U {s}/x i eLf.

Proof

The proof will be carried out by contradiction. Clearly every node

{i/x i c Lf} belongs to X since there are no'upper bounds on the variables

y.. Now, suppose that there exists a minimal cut (X',R') such that
i

X' - X(JJ where x .L Then we can add to the network of problem II a new

- 24 -

non-basic variable yj > 0 with value zero (i.e., a link connecting the

source with node j with zero flow). By Theorem,2.1, all basic optimal

solutions of II are also basic optimal solutions of I, where L, = Lf Uxf f

in contradiction to the assumption that there exists no such set.

03 Theorem 2.2

Corollary 2.1

Under the assumptions of Theorem 2.2, when maximal flow is achieved,

all links:

{(ik) eL/x i eLf , xk L f)

have a flow equal to c ik and all links:

{(j,i) s L/xi eLf, x. Lf}

have flow with value zero. (Follows from Theorem 2.2 and the Max-Flow-Min-Cut

Theorem).

[Corollary 2.1

Now we are able to present a method for solving problem (2.8). Re-

call that step 1 of the algorithm calls for solving a series of linear pro-

grams: First the linear program corresponding to all states leaving the

boundary, then those corresponding to all combinations of (n-l) states
leaving the boundary, etc. In other words, if L and L2 are two sets of

Lf an fartwseso

states leaving the boundary corresponding to two successive substeps of

2 1
step , then cardinality L f < cardinality Lf. Now suppose that the current

substep of step 1 corresponds to the set of states Lf. If in an earlier

substep (say, corresponding to the set Lj) we obtained a basic optimal solu-

tion with fy a 0, V x£ Lj/Lfj and LfC L', then by Theorem 2.1 all

optimal solutions of the current substep (Lf)* are included in the set of

optimal solutions of the earlier substep (LI). Therefore we do not need to

solve the linear program corresponding to the current substep. In algorithmic

- - 25 -

terms, there are two ways for checking the existence of such a set L

1. To search all solutions obtained in earlier substeps corresponding

to sets L' where Lf C Lj, while looking for a solution with

{yj = 0 Vx. e LVLf}.

2. To find the Maximal Flow corresponding to the current substep (Lf)

and then to look for earlier substeps L such that LfC Li with

the same value of Maximal Flow.

Method (2) follows from the proof of Theorem 2.1.

Suppose now that there is no set L' such that LfC L' and such

that the problem corresponding to Li has an optimal solution with

{y. = 0 Vx.e L~,I}. In this case we apply to the network corresponding to

Lf. the Maximal Flow Algorithm. According to Corollary 2.1, when maximal

flow is achieved, the network can be partitioned into two subnetworks as

shown in Figure 2.4:

xk E Bf-1
X ik ik.

s0

xi C Lf cut

Figure 2.4 - The two subnetworks separated by a minimal cut.

Recall that since we are building a feedback control region, we are

searching for all extremal values of (yi/xi c Lf} and the corresponding

controls (ujk/(j,k) e L}. But we notice that only pivots on the subnetwork

corresponding to X will lead to new extremal values of (y I/xi e Lf, so

-26-

that in order to obtain all optimal solutions to the problem corresponding

to L we concentrate on the reduced network depicted in Figure 2.S:

b

Xi C Lf

Figure 2.5 - Network configuration before the pivoting operation.

In Figure 2.5 we define:

cid + c . . i e I(d) (I I(k/xk c Bf_ 1)jcet(i) 1J

x Lf

b. - .c.. V iOl(d) and icl(k/xkeBflI) (2.10)" i jCE (i) i

xj Lf

c id VieI(d) and i4I(k/xkcBf 1)

0 otherwise

bs bi. (2.lOa)

For the first basic optimal solution we take

Yi = bi V xi e Lf

(2.11)

uij S 0 V xieLf , j cE(i)f {i/x i e L f }

By pivoting on the network of Figure 2.5, we obtain all the required

optimal solutions, when for each solution the flow values on the links in

are equal to those achieved when applying the Maximal Flow Algorithm.

-27-

Notice that at every substep of step I a further reduction of the net-

work is obtained. Moreover, from considerations of Theorem 2.1, there might be

many substeps for which there is no need to solve a linear program.

D. States Leaving the Boundary from Constructed Feedback Control Regions

We deal here with step 2 of the algorithm of Part A of this Section.

In this step we find the leave-the-boundary values of the costates X. for all1

xi e B corresponding to a constructed feedback control region R , and thenpp

we solve a linear program of the form (2.2) for each L r B . Step 2 is per-

formed iteratively for each previously constructed feedback control region. We

point out here, that the values of the costates corresponding to I and the
p

values of the costates corresponding to states leaving the boundary (L p) are

positive. These details will be proved in Section 3. As for step 1 of the

algorithm, step 2 can also be greatly simplified, as shown by the following

theorem:

Theorem 2.2

Consider the problem

Maximize I aiy. a. > 0 V xi e Ip-1 (2.12)
x.cI 11 11 -

1 p- 1

s.t.

Z u. .+ uki+Y i - 0 x. eIjeE(i) "3 keI(i) p-

.=..- u ki 0 x.e BjeE(i) '3 kel(i) -i(2.12a)

y i -" 0 x i E I p_ 1

ucu

A basic optimal solution of (2.12) with arbitrary coefficients (ai } is also

a basic optimal solution of (2.12),' with (a, 1,Y xi¢CI P.1.: i

- 28 -

Proof

Assume that:

F, = optimal value of (2.12) with {ai = 1, Yx. I 1

y* = optimal solution vector to (2.12) with {a. > 0, Vx. C I p}.

Now suppose that:

I y* < F (2.13)
i p-1i

Then the Maximal Flow Theorem (see Appendix A) implies that if (2.13) is

satisfied,we can always find a path between the source and the destination

nodes of the network corresponding to problem (2.12) on which we can increase

5 the flow, in contradiction with the assumption that y is an optimal solu-

tion to (2.12) with {ai > 0, V x C I p1 }. Now, noting that:

Y Y. > F1 , (2.14)
x CIp-1

cannot be satisfied, since clearly a flow satisfying (2.14) violates the con-

straints (2.12a) by the Maximal Flow Theorem, then:

y Yi = Fl (2.lS)
x.cIi p-1

Moreover, since the structure of the network corresponding to problem (2.12)

does not depend on the weightings (ai}, then all basic optimal solutions

of (2.12) with {a. > 0, V x. i Ip-} are also basic optimal solutions of

(2.12) with (ai = 1, V x iC Ip.}

0 Theorem 2.2

Now, transforming the linear program (2.2) into a Maximal Flow Prob-

lem in a network with weights on the links connecting the source with every

node, we have:

- 29 -

Maximize A .iyi (2.16)
x.eI 2..
I p-1

s.t.

- u..' u i 0+Y. o VxC 1jeE(i) "J kcl(i) ' Ip-i

Su..- u u =0: VxeB

jeE(i) 'J keI(i) i p-i (2.16a)

Yi J

According to Theorem 2.2, all solutions of problem (2.16) are solu-

tions of problem (2.9) with Lf = Ip-I, therefore every linear program of

step 2 of the algorithm of Part A of this section reduces to the following

simple problem:

From among all solutions of problem (2.9) with Lf = Ip , (denoted

by y*) choose those satisfying:

Max Z X.y. .

yey~ x . I P11

Note that step 1 is performed for all possible combinations of states, assur-

ing that we can always find a set L such that Lf I IpI

-30-

Section 3

THEORETICAL RESULTS

A. The Structure of the X-Constraint-Figure

in the Positive Orthant of the X-Space

In [M3] the y-constraint-Figure, Y, is defined as follows:

Y {Y Rn/ue£U

where

0 < Uik C 'ik
U

{,(i,k) e L

and the linear transformation relating V and U is given by:

Y(T -x(') =-BU(T)

where B is the incidence matrix of the network.

Since U is a bounded convex polyhedron in Rm, its image V is

clearly a bounded convex polyhedron in Rn. Thus, every face of Y can be

analytically described by an expression of the form:

n
aiy. = ({ai}) (3.1)

where {a } is a set of coefficients and L({ai}) a constant with value

depending on the set {a.}.1

Our first aim is to prove that all coefficients {a. I corresponding

to any face of V that is in the positive orthant of the y-space are nonnega-

tive. This is easily demonstrated if we consider a constraint of the form

}'[aiy i L((a.i) , (3.2)
irn

a~~~yi Z(a,)(32

- 31 -

passing through the positive orthant of the y-space so that there is at least

a point y lying on the boundary of (3.2), satisfying:

1
I > 0 i EN .(3.3)

Suppose now that a coefficient of (3.2), say ak , is negative and let us con-

centrate on one of the paths carrying flow from the node k to the destination.1L
At least one such a path exists since y1 > 0 by (3.3). Clearly, by decreas-

ing the flow on this path the flow on the network will remain feasible, but we

violate the constraint (3.2) since ak is negative. Therefore all coeffici-

ents of (3.2) must be nonnegative. Moreover, clearly the constant Z ({ai})

is given by:

n
WaiM) = max i a y (3.4)

In order to obtain an explicit set of constraints defining Y in the positive

orthant of the y-space we must take all the constraints (3.2) and eliminate

those which are redundant. To do this, we shall present now three redundancy

conditions and we will prove that if a constraint such as (3.2) satisfies at

least one of the conditions, it is redundant, Moreover we shall prove that

a constraint satisfyingnot one of the above conditions is not redundant. In

other words, a necessary and sufficient condition for a constraint of the form

(3.2) to be redundant is the fulfilment of at least one of the conditions.

For a constraint such as (3.2) we denote

D = (i/O < a. ea.1 1

and

k(D) =Max Yi
YD

i - &

-32-

Redundancy Condition 1

The hyperplane

aiy. Wa Z((a) (3.5)

is redundant if at least two of its coefficients are different.

Proof

By Theorem 2.3:

{y zY/I a iy. = ((a .1)}C{y e/ y. k(D)}
D D

Namely, to a hyperplane of the form (3.5) always corresponds another hyper-

plane with unity coefficients containing all points of tangency of (3.S) with V.

Redundancy Condition 2

The hyperp lane

Iy. = k(D) (3.6)

is redundant if there exists a set of indeces DI such that:

D C D (3.7a)

with

y. = k(D) .(3.7b)

Proof

By Theorem 2.1, if (3.7) is satisfied, then:

(y e Y/ k (D)}C{y e /l y. k (D) I
D DI0'

Namely, the hyperplane (3.7b) contains all points of tangency of (3.6) with Y.

Redundancy Conditioni 3

The hyperp lane

y. X k(D) (3.8)
D'

- 33 -

is reuundant if there exist sets of indeces {Bj, = l,2,...,r}, satisfying:

r
l k(B k(D) (3.9a)

~r
U: B I D

?,j~l *
J

nJ =.
j= (3,9b)

B(B.2 t} vjlj 2c {l,2,.. .,r}
~1 j2

where

k(B.) Max y (3.9c)
Y B.

I
Proof

There are no common links to the minimal cuts corresponding to the

hyperplanes (3.9c), because the existence of one such link implies:

r r r
k(D) = Max y y< I Max Z y Y Max V Y, : Z k(B.)

V D j=l B j=l V B. j=l

r
or k(D) < I k(B) contradicting (3.9a).

j=l

Now if there are no common links to the minimal cuts corresponding

the hyperplanes (3.9c), then by (3.9b) follows that:

r
{y YiZ y. = k(D)} {y /y. (([yi = k(B))} ,

Di - j=lB
3

therefore (3.8) is redundant.

O Redundancy Conditions

We prove now by contradiction that a hyperplane of the form

i = k(D) (3.10)

D

satisfying none of the three redundancy conditions is not redundant. To this

end we assume that (3.10) does not satisfy redundancy conditions 2 and 3

- 34 -

(condition 1 is clearly not satisfied by (3.10), but is redundant. If (3.10)

is redundant, then there is a non-redundant hyperplane of the form:

yi = k(D') (3.11)
DI

such that:

YY Y/ = k(D). IC {y Yyi = k(D")} , (3.12)
D D

and this for the following reasons:

Every solution of (3.10) over Y is feasible and tangent to V. The

surface of tangency common to (3.10) and Y is clearly a convex hyperplane of.

dimension m, where m < (n-i), (if m = (n-l) then (3.10) is not redundant).

Now, an m-dimensional hyperplane on the boundary of Y corresponds to the inter-

section of (n-m) non-redundant hyperplanes of dimension (n-i), and every

point of tangency of (3.10) with V belongs to every one of these (n-m)

hyperplanes. Hence, (3.12) applies to every one of the hyperplanes forming the

surface of tangency, and for the proof we need to consider only one of them,

say the hyperplane given by (3.11).

Now, we prove that (3.10) is not redundant. Note that in general the

index sets D, D' can be partitioned as follows:

D = {DID 2

D' = {DI ,D 3

where

D1(D2 = D1 D3 2 3

Our aim is to contradict (3.12), considering all possible relations between

the sets D and D'. There are four cases:

- 35 -

Case 1: D } # {}; D3
1 D2

In this case we choose a point X* satisfying:

Z y = ly! = k(D)

D D2

where

y > 0 Vi D
2

y* = 0 i D

Clearly, since D3 # {O} we have:

Zy jy= 0 < k(D-)

thus contradicting (3.12).

Case 2: D = {W; D $ {@}; D2 {€}.
3 2

Here we choose a point * satisfying:

*y = k(D)
D

(3.13)

Z y. = k(2)f' D2

But if (3.10) does not satisfy redundancy condition 3, then:

k(D) < k(D1) +k(D 2) , (3.14)

therefore from (3.13) and (3.14) follows that:

Dy! y! k(D) - k(D 2) < k(D I) k(D')

or

* < k(D')
DtI

in contradiction to (3.12) •

- 36 -

Case 3

Let us chcoje a puint y sat~iying Y K(O KtDID

where

Y 0 D i D

y- 0 D

Now, if 7 y = k(D)f k(D., * ther, ia.e C C D', hy-verplane (3 10)t
DO

satisfies redundancy condition 2, c ntraditung the hmpt.on, thu,.

L yv - k(D')

in contradiction to (3.12).

Case 4: D I it i; D2 {o$; D3 t€

In this case we choG:e a point sati-fying:

y* = k[D)
D

where
y* >0 V D 1 5)

Y' = 0 ViLD.

This point satisfies L c k(D') since ifD,'

y kD') , (3.16)

then from (3.IS) and (3.16) foilow, that:

Max Y y.*-KD
Y DVD' ' D'UD

Thus, (3.10) satisfies redundancy condition 2 in contradiction to the assumpticns.

Therefore y* contradicts (3.12).

In order to illustrate :he procedure for obtaining the y-conitraint

figure in the positive orthant cf the).-space, *e present the fci-owing imple

- 37 -

example in two dimensions:

Example 3.1

Consider the network depicted in Figure 3.1:
c 12 =2

=2

c21 ' I

O~ld = 2d 2

Figure 3.1 - Network of Example 3.1

Finding the maximal flow values of the networks shown in Figure 3.2,

we obtain:

(a) Maxy 4 (b) Max y2 3 (c) Max (y +y2) 4
1 V 1

S S S ." '

(a) (b) Cc)IFigure 3.2 - Networks to find the maximal flow.

Clearly the hyvperplane y1 = 4 is redundant by redundancy condition 2, and V

is defined by

s2 3

' 's
and.

(a) (b)y(c)

- 38 -

The region in the positive orthant of the y-space is depicted in

Figure 3.3: Y24k

3

2

/

3.1
/ ,/

1 2 3 4 Yl

Figure 3.3 - Structure of Y in Example 3.1

03 Example 3.1

B. Special Properties of the Feedback Solution for Single Destination Networks

with all Unity Weightings in the Cost Functional

As we mentioned in Part A of Section 2, several features associated with

the Constructive Dynamic Programming Algorithm in the case of multiple destina-

tion networks, or when the cost functional has nonequal weightings, complicate

the formulation of a computational scheme to implement the algorithm. However,

in the case of single destination networks with all unity weightings in the cost

functional various simplifications result, thus permitting us to develop a com-

pact algorithm for building the feedback solution. These simplifications are

stated and proved in (Ml]. However, the approach in this work permits us to

carry out the proofs in a more simple and straightforward manner.

We begin with the central theorem of this section. The proof of this

theorem is the basis of all subsequent proofs.

Theorem 3.1

The value of the leave-the-boundary costates are unique at a given

boundary junction time t
V.;

- 39 -

Proof

Assume that t is a fixed boundary junction time and consider first

p

the case in which we allow all states lying on the boundary to leave it, that
.4-

is L = B . Let us denote by t the time just before the states in B
P p p p

leave the boundary, and by t the time just after the states in B haveP P

left the boundary, (going backwards in time). Now, the restricted Hamiltonian
S

at t is:
p

H(t-. t: .t+) X (,to)y: (3.17)
p p x.EI p 1

-i p

and the set of operating points in the y-space is given by:

Y - {YeV/z(t .) = Max X t)
P " x.cl 1 p

'p

We assume in this proof that all operating points in Y are nonnegative,
P

that is, they are in the positive orthant of the y-space. Later we shall prove

that in the case of single destination networks with all unity weightings in the

cost functional, we can consider only this orthant and that there always exists

a solution there.

We denote by "a" the optimal value of the restricted Hamiltonian (3.17),

that is:

Max y Y. - a . (3.18)
V xicI p

By the Constructive Dynamic Programming Algorithm, we have to find the

leave-the-boundary costate values associated with all states in B which allowp

for the optimal departure of the states from the boundary at tp, (see (M2]).

In geometrical terms, the above step calls for finding the values of (A.(t),

Vx £ Bp}, for which the global Hamiltonian

H(t.): zet;) i i(tp)Yi+ i X (t)yi (3.19)

ip
xi Bp

contains a B p-positive face of Y (see [M3]). Notice that since the operationLp

- 40 -

is made by rotating H(t) around H(t)+ then Y EH(t), therefore:
p p p P

Max A i(tp)yi X i (tp)y.i max)(tp)Y. a (3.20)
V xzi p x.eB p Y x.CI p

p ip ip

Now we prove the assertion:

Assertion 3.1

(i) X i(t) > Vx i I

(ii) .i (t) > 0 Vx i cB1 p

Proof

i) If xi Ip, then x. has left the boundary for the last time at T,

where T > tp with an optimal slope yi > 0. Now, clearly Xi (T) > 0

since otherwise it is not optimal for xi to leave the boundary at T.

Therefore, since M. t)= -1, 'Vtc (t ,r), we have that Xi(t+) > 0,

Yx.¢ CI P,11 p

(ii) If A (t) < 0 for some x. Bp , then it is not optimal for x. to
i p 3. 1

leave the boundary, but x. does leave the boundary, so that1

Xi(t)_ 0, Vx i C p .

03 Assertion 3. 1.

Now, since {A (t+) > 0, x i C I then by Theorem 2.3 we have that:

(ycY/ [X.(tp)Yi a)C (yc/ e y " k(I)} (3.21)
xi 1 p 1 - xiCI

i p i p

where

k (Ip "Max Yi
V x CIp

i p

Moreover, since {Xi (t) > 0, V xt z Bp}, then'by Theorem 2.3 it follows that:

- 41 -

(ycY/ Ai(tp)yi+ Ai(t p)yi a) }C(yrY/ I yi +I yi k(I pUA)},
x p ip " p xi x CA

(3.22)

where A is a set of states such that A C Bp. Clearly, since Y cH(t-),
p p p

then by (3.21) and (3.22), Y belongs to all sets in (3.21) and (3.22),
p

therefore:

Max{ I y.+ I Y.) = Max . yi =k(Ip) (3.23)
Y xiCI xi CA Y x I 1

Next, we prove the following assertion:

Assertion 3.2

There is a (unique) maximal set A satisfying (3.23).

Proof:

Suppose there exist m sets {A., j = 1,2,...,m}, satisfying:3

Max(I yi + yi } =k(Ip), j -1,2,...,m
V x cI xiCA

Now, consider the following networks:

(a) Network having links connecting the source with every node in I

namely, network corresponding to the problem Max I yi, (see parts
Y x.eI

B and C of Section 2). 1 p

(b) Network having links connecting the source with every node in Ip and

in Al, namely, network corresponding to the problem

Max (.y + Y yi .

V xi1 p xiCA 1

(c) As (b), but A1 being replaced by A2,A3 ,.s..,A.

Now by Theorem 2.1, all networks in (a), (b) and (c) have at least one

common minimal cut. But this minimal cut is obviously a minimal cut of the

network corresponding to the problem:

- 42 -

Max{ Yi + Yi
V x i Ip

xP cU A.
i j=l

so that

max{ I. Yi + Yi } k(I p

V x.CI 1
i p x. UA.

j=l 3

Therefore, since there is a finite number of states, then there is a (unique)M
maximal set A = U A. satisfying (3.23).

j-l 3
0 Assertion 3.2

From now on, the face of V (of dimension less or equal to n-1),

defined by the set IpU A will be referred to as the (I VA)-face.
p p

Now, we concentrate on the set of states B and we prove the follow-
P

ing assertion:

Assertion 3.3

If x eB but x. %A, then).(t) = 0.
*j P 3 P

Proof:

The proof will be carried by contradiction. Assume that j(tp) = 0

for a set of states D such that DCB p/A. Then, the enlarged Hamiltonian

is given by:

H (t): Z(tp) - xi Ct)YY + A,.t)Yt + A (t)y3 (3.24)

xiIp 1 3AxE

Moreover, frouTheorem 2.3 follows that:

{(tV/z(t) - a) C (ycI/ y i + yi + Y - k(IpUAUD)} . (3.25)

x i Ip x c Aix j D~ J cIAU

Now, if k(IpUAUD) 'kIp), then Yp 1H(t-) which is a contradiction; and

if k(I pAVD) k(I then clearly DCA since A is the maximal set

- 43 -

satisfying (3.23), again a contradiction. Therefore {A (t) = 0, Y x B /Al.

O Assertion 3.3.

From assertion 3.3 follows that the enlarged Hamiltonian is given by:

H(t): z(t) (c +)y + I A(t-y i = a (3.26)
p x. eI i p i x.cA 1

i p

and that the B -positive-face is given by the intersection of the Hamiltonianp

(3.26) with the (I tIA)-face (3.23).

Now we prove by contradiction, that the Hamiltonian (3.26) is unique,

implying that the B p-positive-face is unique. Suppose that there are two

Hamiltonians of the form (3.26) such that the intersection of every one of

them with the (IpU A)-face gives two distinct B -positive-faces. These Hamil-
p p

tonians are:

z = 1 (t) t*Yi+ I X t)yi a , (3.27a)

p x. i p xci P

Ix. 2 x.A A

where for the two Hamiltonians to be distinct, there is at least one x. CA
1

such that AI(t-) # A2(t'). This also implies that there exist at least two
i p i p

points y1 > 0 and y2 > 0 of the (IpUA)-face, such that:

,z (t) - a

at y , (3.28a)

z2 (t-) < a

z (t •a
2

Sat y .(3.28b)

z I (t-) < a
pJ

-44-

Now consider the intersection of one of the Hamiltonians, say (3.28a)

with the (IpU A)-face. Since both, the Hamiltonian and the (I U A)-face are
p p

convex and linear, their intersection will give a convex polytope. Moreover,

since the (I V A)-face is bounded, the intersection will give a convex poly-
p

hedron. Thus, starting at an extremal point of the polyhedron, we can always

reach any other extremal point of the polyhedron through a series of pivots.

Note that all extremal points of Y are contained in the above intersection.p

Suppose that, starting at some extremal point of Y p, we want to reach the '
1

point y through a series of pivots in such a way that after every pivot of

the above series we reach an extremal point of the polyhedron, that is, satis-

fying the equations of the Hamiltonian and the (I U A)-face. We state that
p

the transition between Y and y can be done in the following way:p

(i) Starting at Yp, reach the extremal point ya through a series of

pivots on the polyhedron, where

ya y 1 Yx CI 1a Yi i p

a0B (3.29)

Yi 0 eBp/

(ii) Without changing the coordinates corresponding to the states in I p A,
ip

reach y.

The above procedure is justified by noting that if we are moving over

the (I pU A)-face, then every point reached after a pivot operation must

satisfy:

Yi + I -i k (1 (3.30)
x. I x CA ii p i

and by Corollary 2.1 the network looks as in Figure 3.4:

-4S-

i ..//\ ".

x xCI x EA x. EB /A

-u.
Uki = 0 ik ik

1
Figure 3.4 - Network reaching the point y

1
Clearly, in order to reach y we cannot make pivots between states

in IpU A and B /A because by making such a pivot we violate (3.30).
p

Recall that our aim is to contradict (3.27), that is to prove that

the Hamiltonian is unique. To this end we shall deal with pivots in the part

of the network corresponding to states in I U A. First we prove the follow-
p

ing assertion:

Assertion 3.4

Starting at Y , we can always find a path in the network between

each node {j/x. cA} and some node {i/x.i Ip }, that permits us to perform

a pivot while increasing (from zero) the flow in the link corresponding to y.

and still to remain on the Hamiltonian (3.27a).

Proof
1

Consider the series of pivots that reaches y from Yp . Suppose we

show that after completing n pivots of this series, we could also have in-

creased the flow yi, where x. j A, corresponding to the (n+l)-st pivot

b
before the n-th pivot, reaching in this way a point y that satisfies the

equation of the Hamiltonian (3.27a). Clearly, the application of the same

- 46 -

b
arguments to the new series of pivots that reaches y from Y provides

p

us with the induction step that proves our assertion.

For the sake of clarity the following notation will be used:

(i)
Y J =the slack variable y. that increases (from zero) in the i-th pivot.

2yi)" = the slack variable that decreases its flow in the i-th pivot.

= the costates corresponding to the slack variables of the i-th pivot.

y(n) = the point reached after the n-th pivot.

AY = the increase of flow in a slack link after pivoting.

Suppose we cannot perform the (n+l)-st pivot before the n-th one.

Clearly, this occurs only when there is at least one link common to the n-th

and (n+l)-st pivot cycles, such that the execution of the (n+l)-st pivot is

possible only after the n-th one. All such "critical" links must be in

opposite directions on the n-th and the (n~l)-th pivot cycles. We shall

contradict our assumption by showing that:

(a) (n+l) =(n)

(b) before the n-th pivot there exists a cycle that permits increasing

(n~l) while decreasing yn)

Consider first the situation before the n-th pivot, (see Figure 3.5).

Suppose that (k,j) is the first critical link on the (n+l)-st pivot cycle.

Clearly, since the link is critical it belongs also to the n-th pivot cycle.

Then follow the (n~l)-st pivot cycle from y1nl) up to the node k and

(n)
then the n-th pivot cycle up to y2 Clearly we can perform a pivot on

this cycle. Moreover, X(n+ l) < A(n) because if X(n l) > (n) then, per-

forming the pivot corresponding to this cycle will give:

- 47-

X. (tp)y. (n-1) + X. (tp)y.(n-l) + A(n+l) y+ A (n)Ay = a+ (X (n+l) X (n))Ay a,
x EI p I xcA1 ' P

thus, contradicting the optimality of the Hamiltonian (3.27a).

Next, consider the situation after the n-th pivot, (see Figure 3.5).

Let (k',j') be the last critical link on the (n~l)-st pivot cycle. Consider

the following cycle: start at y(n), follow the n-th pivot cycle backwards

up to the node k' and from there on follow the (n+l)-st pivot cycle (for-

(n+ 1)wards), up to yn2 . Clearly we can perform a pivot on this cycle and hence

A(n) < X(n + l) for the same reasons as before.

-- n-th pivot cycle links; (n+l)-st pivot cycle links; ... critical links

(n+n) W ¢ n (i
Y2 -dy

(n+l) X (n+1) ,jn)-i . 4Y1

Yr. X(n+i)

Figure 3.5 - Example of critical links.

Therefore we conclude, that A(n) . X(n+l) and as said already, before
* (n~l) (n yn) o hc io

the n-th pivot, there is a cycle including yl and y(on which a pivot
•(n. 1) ro eobeoetenh

can be performed so that we can increase yl (from zero) before the n-th

pivot while reaching a point that satisfies the equation of the Hamiltonian

(3.27a). This proves the induction step.

0 Assertion 3.4

- 48 -

Now we contradict (3.27). By assertion 3.4, starting at Yp, we can

reach points y* by performing a single pivot on the network. These points

lie on the (IpU A)-face and also satisfy the Hamiltonian equation (3.27a),
p|

namely:

7 A.(tlY)y+ X 1 (t)y* = a, Vx eA . (3.31)
X.CI 1 p1 In m I p m
xII1 p

We check now the second Hamiltonian (3.27b) at the above points.

Notice that since we assumed that (3.27b) is optimal over V, it must satisfy:

Si(tp)y! X 2 (t)y* < a, Vx EA (3.32)
X.el 1 p 1 In p MD m

1 p

From (3.31) and (3.32) follows that:

A 2(t) < x t, Vx LA . (3.33)
mp-mp m

But obviously, assertion 3.4 holds also for the second Hamiltonian (3.27b), hence:

1(-) 2-) xeA(.4

Thus, from (3.33) and (3.34), we have:

1 (t-) 2 A C), 'x L A

We then conclude that the B -positive-face is unique and therefore the leave-

the-boundary costates are unique.

When only some of the states leave the boundary, we consider the re-

stricted Hamiltonian:

H pItp): z(t) = i (t+)yi + A.(t)y
'xi p xicLp

with L C 8 . But in order to satisfy the necessary conditions the optimiza-

p p

tion must be global, namely:

H (t-) * H(t) RP p
p-l p p

where

-49-

a = cardinality of I
P p

P p cardinality of L ,
P p

and the basis vectors of JR*p are the elements of I Therefore the

values of the leave-the-boundary costates in the case of L C B are identi-P P

cal to those corresponding to the case of B so that they are unique.
p

0 Theorem 3.1.

Theorem 3.2

If the values of the costates corresponding to states travelling on

boundary arcs during the interval between two successive junction times

tp 1 and t are equal to the leave-the-boundary costate values, then
p~l p

every costate satisfies exactly one of the following conditions:

S (T) = X.(T) = 0, VT e p,t 1) , (3.35a)

() =-; Ai (T) > 0, Yt E (--,t p+) (3.35b)

Moreover, in every feedback control region there always exists an optimal

control satisfying y > 0.

Proof

Every optimal trajectory in the state space is characterized by a

control switch time sequence (tf~tf ... ,t t tp,...), when each

switch time represents a transition between two neighboring feedback

control regions in the state space (see (Ml]). The interval between two

successive switch times tp 1 and tp is characterized by the set of

states travelling on interior arcs, I . Considering every possible control

switch time sequence insures that we have traversed every feedback control

region, thus covering the whole state space. To prove the Theorem we shall

consider a typical control switch time sequence, and we will prove by induc-

tion that the costate trajectories satisfy (3.35), and also that there exists

- 50 -

at least one optimal control for which y > 0 within every feedback control

region. Notice that the existence of such an optimal control allows us to

consider only the set of trajectories for which there is no return to the

boundary of states (x = 0), backwards in time.

Now we proceed with the proof. Consider first the interval (tp tp 1).

Since {Xi(tf) = 0, Vx i F Lf} (see [M2], pp. 25-26), at tf all costates

corresponding to the states in Lf are identical. Now, by Theorem 3.1, for

the costates corresponding to states on the boundary to be at their leave-the-

boundary values, we have to find the maximal set of states Afl1 that satisfies:

Max{ I Y i + y.) = Max I yi = k(Lf) (3.36)
V xieL f xicA f1 Y xiEL f

Moreover, the enlarged Hamiltonian at tf must lie on V in such a way that

all operating points in Yf-1 satisfy equation (3.36). But as said before,

all costates corresponding to states in Lf have the same value at tf, so

that the enlarged Hamiltonian will contain the (Ifl U Af-l)-face (3.36).

Hence Theorem 3.1 implies that

i) Ai(tf) = 0 for all x. e Bf1 /Af1

(ii) the values of all Xi(tf) are identical for all i such that

xi e L fUA f_11

where (i) follows from Assertion 3.3, and (ii) follows from Assertion 3.4 and

the fact that all costates corresponding to states in Lf have the same value.

Now, clearly there exists at least a point on the (If-l A .l)-face, satisfying

Yi > 0, Yx i eLf = I.1

(3.37)
yi a 0, V xi B f

Moreover, since we require that all costates corresponding to states travel-

ling on boundary arcs in the interval (tf~t f1) be at their leave-the-boundary

l- 51

values, (i) and (ii) hold for all Tc (tftfl), so that the point (3.37) is

an optimal solution for all - e (tftf1). Therefore we have:

X (T) f f-1, Vx i -L f fU A f 1 -IU Af-i
(3.38)

(T) (T Bf 1/Af-1

ST C (tf-t f.I)

Now we perform the induction step: Consider the time interval

(t ,t), and assume that the set of operating points Y , contains at

least one point satisfying:

y, > 0, Vx. E I

1Yi 0 1 p

We denote by A the maximal set of states satisfying

Max{ I y yi } = k(Ip)
Y x.eI x.eA

1 p i p

Keeping the costates corresponding to states in B at their leave-the-

boundary values at every instant on the interval will result by Theorem 3.1 in:

X() - 0,Yxi x- B/A p (3.40a)

X = X(T) V X i Ap x. CI p (3.40b)

Moreover, from the existence of a point satisfying (3.39) during the entire

interval follows that:

A.(T) = X -1,I
(3.41)

V T C (tptp +1)

therefore from (3.40) and (3.41) we have:

- 52

x. (T) X (') 0, Vx i : B p/A , (3.42a)

Xi(T) - 1; A i) > 0, V x. IUA , (3.42b)
1 P p

V rc(t ptp+I)

where X. () > 0 follows from Assertion 3.1 of Theorem 3.1.

Now consider the boundary junction time t where we allow the setp

of states L to leave the boundary, so that Ip 1 = IpU Lp. Noting that

we have kept all costates corresponding to states in B at their leave-the-

boundary values during all the interval (t p,tp+l), we realize that at tp

(3.40) is satisfied, namely at the junction time the Hamiltonian does not

change its orientation. Therefore in order to reach points in Y (from

a point in Y), we have to perform pivots on the subnetwork corresponding to
p

states in Ip U Ap (see Figure 3.6), increasing in this way the flows on the

links corresponding to yi, where x. e Lp A and then to increase the flows
1 p

on the links corresponding to yi, where xi c L p((B A).

A
B p/A p

iL

1

1p p
p p

IP
U k i 0

, %i

Figure 3.6 - Network representing transition between Yp to Yp-

p
pik- ii

- 53 -

As a result of the increase of flow on a link yi corresponding to an

x. Lp (A p, there is a decrease of flow on some link y. corresponding to an

x. C Ip, however, it is clear that we can always increase the flow on y. in

such a small amount that y will still remain nonnegative for all x. £ I
3 P

Moreover, the increase of flow on links y. corresponding to x. e (Bp/A)y L
1 pp p

does not result in decreases of flows on other slack links so that Y will

contain points satisfying

yi> VxiCIp-1

(3.43)
yi 0 Yxi Sp- I

Now IpC Ip I so that when maximal flow is achieved on the network

corresponding to I (i.e., network with slack links y. for all xi e Ip-l 1 1 p-1

only), all minimal cuts of I will be filled. In addition, the sets I
p p

and I U A have the same minimal cuts, therefore:
P

ApC A _U Lp (3.44)

where Ap 1 is the maximal set of states satisfying

Max{ I y i + I = k(p-1)
V x.c¢pI xcAp.

i p-1 i ep_

Now, from the existence of a point satisfying (3.43), and from the

same considerations as in the interval (t p,tp+), we have

(T) A i (T) -0 V xi BP- 1/A_.1

1C 1 1 p- p-

(3.45)
C r) - -1; ?i(r) 0 ; VxeIc 1pUA _

V re (tp13t, p).

Moreover, since I p-l' from (3.45) follows that

X () -- ; >-0• ; .t
p (3.46)

T 9 (tp-1,t p

- 54 -

and since Lpr_ Ip_ 1 , from (3.44) and (3.45) follows that:

W - -1; i() > 0, Vx i eA p

(3.47)

Therefore, equations (3.39), (3.42), (3.43), (3.46) and (3.47) provide the

induction step that proves the theorem.

03 Theorem 3.2.

The costate trajectories (3.35) satisfy the necessary conditions (which

are also sufficient) derived in [M2]. Moreover, these trajectories were

obtained by checking at every moment the global Hamiltonian, thus insuring

that values of the costates corresponding to states on the boundary can always

be found such that the solutions obtained by considering only the restricted

Hamiltonian are also globally optimizing solutions. The above arguments yield

to the foIlowing corollary:

Corollary 3.2

Any solution to the constrained optimization problem (see [M2], p. 64)

is also a globally optimizing solution.

O3 Corollary 3.2.

Theorem 3.3

The set of optimal controls does not switch between boundary junction

times; that is, there are no break points between boundary junctions.

Proof

Consider the time interval (t ptp+) and denote:

Max xi ()y a(')
o x1 c CIp

Now consider the times T Ct , t +). The set of operating points is given by

p

YpTcl t ha Y/ p t i)yi - a(Tl3) si.48)
" x. I

Ipp
Recall that all points in (3.48) satisfy

yi k(Ip (3.49)

Now consider the time T2 e (t ptp+l), where T2 = T1 + AT. The set of operat-

ing points is given by

~a
Yp(r 2) - (y CV/ i = a(T2)}1 R p . (3.50)x.cI

ip

But every point in (3.50) satisfies (3.49), and also by equation (3.42b) we

have

(T)= -1, i I p

Y T (t ,(tp. I)

Therefore:

Max I)i(T 2)Yi = Max{ I . Xi(Tl)yi• AT s) Max X Ai(1)yi + A' k(Ip)
xicIp Y xi Ip xi lp Y x.eI -

Thus:

Sp(l) I= Y p(T 2) .

so that the set of optimal controls does not switch between boundary junction

times.

3 Theorem 3.3.

Theorem 3.4

There is one subregion per region with respect to any set of state vari-

ables leaving the boundary.

Proof

Consider the feedback control region Rp constructed from the set of

-56-

optimal solutions Y on (--,tp). Also, let L be the set of state vari-

ables which we choose to allow to leave from R backwards in time, where
p

L pC B p. According to the definition of subregions (see [M2], p. 57), we must

show that the state variables in L leave with the same set of optimal controls
p

from every point of R . Recall that by Theorem 3.3 the optimal trajectories

associated with the state variables in Lp leaving Rp, do not experience

a break as time runs to minus infinity, so that to prove that there is one sub-

region per region is equivalent to showing that the set of optimal controls

associated with the state variables in L leaving the boundary is the sameP

for every boundary junction time t c (--,t). Note that we need not be con-
p l

cerned with the common breakwall sequences (see [M2], p. 56), since by Theorem 3.3

there are no breakwalls. Now consider two different boundary junction times,

t p, t P2 (--,tp+l) and assume that t > t P. By Theorem 3.3 we have that

ap+P
YpI(tPl) l i Y/ I. i(tp)yi

= a(t p)}O R P1

p-lU A 1

and

Y P 1 (tP2) = (yeV/ IP - (t P)y = a(t)}IR P p (3.S2)

p-p2 I, 1 UA 1 _1 p2 1 P2

where

a() - Max X. (T)y i

V I1 UA 1 1~

a +
The coordinates of R 'p

P are the elements of Ip-11 and Ap- is defined

as in Theorem 3.2.

Now, by Theorems 3.2 and 3.3 we know that

i(T) -1, VxiCI p U Ap

Xi (T) 0 0, y x i C Bp/A

where Ap is defined as in Theorem 3.2.

- 57 -

Hence:

A (t P2) = A i(t f) 0, Yx i E (I piU A p_)/(Ip A p)

Xi(t P2) = Xi(t p) + tPl , tP2)' V xi E I p Ap

therefore

Max A.(t)y. = Max{ .(t)y i (tp-tp) y}Y I p I P 2. Y IpPi PAp .1 I p A p _

= Max A i(tp)Yi + (t p-t)k(p_1

V Ip1U Ap_ 1 1 1 P2

so that

Yp1 (t) = Yp- 1 (t) ,

then the set of optimal controls associated with state variables in Lp

leaving the boundary from Rp. is the same for every t e (--,t pl).p p4.

0 Theorem 3.4.

58

Section 4

1NE ALGORITHM

This section is devoted to the description of a simplified algorithm

for building the feedback solution to the minimum delay dynamic message rout-

ing problem for single destination networks with all unity weightings in the

cost functional. The simplifications obtained arise from the special proper-

ties of these kind of networks, as discussed in Section 3, and from the new

approach to solve the linear programs presented in Section 2.

In Part A we state the algorithm while explaining its steps. In

Part B we present a method for obtaining all optimal solutions of the linear

programming problems required by the algorithm and finally Part C brings an

example that provides a good insight of the performance of the algorithm.

A. Statement of the Algorithm

Operation 1

List all possible trajectories in the state space, by writing all pos-

sible sequences of states leaving the boundary backwards in time.

E Operation 1.

Recall that every optimal trajectory in the state space is character-

ized by a control switch time sequence. Each switch time represents a transi-

tion between two neighboring feedback control regions. Now by Theorems

3.2 - 3.4 there are no returns of states to the boundary, there are no breaks

in the optimal controls between junction times and there is only one subregion

per region. Therefore every trajectory is characterized only by departures

of state variables from the boundary, the boundary junction times might be

arbitrarily taken and between two successive boundary junction times the set

59-

of optimal controls does not change. Thus, Operation 1 takes int: ac:ount ai

possible trajectories in the state space, so that the construct:on cf reedbak

control regions based on these sequences insures a complete coering f the

state space. Such a typical sequence looks as tollows:

[f ,I f), "",tL pI 'tL p i b l, _ '1 L f -n - l1

The number of possible sequences Q(n) is given by (see (Eli, p, 68).

n r=' V E (-1) ir r~
L "H)I (r';)ni

r=l i=o

n
Notice that the complexity of Operation i is of the order of nn, so

that clearly the algorithm is implementable only for "small" netwock!

Example 4.1

Consider a network with three state vaiables x1, x2 and T3 rhe

sequences are:

tf tf.1 tf 2

I. x2 3

2. xI x3 2

3. x (x2,x3)

4. x2 xI x3

S. x2 x x

6- x2 (x1'x3)

7. x3 Y1 X2

8. x3 X 2 x1

9. X3 (X1 ,X2)

10. (Xlx 2) x3

11. (xI X 3) x2

12. (x2Px3) xI

13 Xlgx 2,x3) "L Exhale 4.

60-

Operation 2

Derive the networks corresponding to every possible combination of

state variables leaving the boundary. Apply the algorithm of Maximal Flow to

the networks and find the corresponding flows.

0 Operation 2.

From Operation 2 we obtain the first optimal solutions to the linear

programs (as explained in Parts B and C of Section 2). Also, the operation

provides the essential tools for obtaining the simplifications of the algor-

ithm as will be shown in Operation 3.

The nuner of networks for which the Maximal Flow Algorithm is to be

applied is 2n-1 . The complexity of this operation is therefore exponential

in the number of nodes.

In Appendix B we provide a computer program in Fortran for finding

the maximal flow in these networks, based on the algorithm of Edmons and

Karp (see [Hl]).

Example 4.2

All the possible combinations of states leaving the boundary in

example 4.1 are:

{xl},{x 2},{x 3},{xx 2},{l,X 31,{x 2 X3 },{XlX 2 ,X3 }

03 Example 4.2

Operation 3

For every sequence of state variables leaving the boundary listed in

Operation 1, and considering the results obtained in Operation 2, execute the

following steps:

- 61 -

(a) Consider every set L of the sequence and check if there is a sub-P

set of states B such that B C L, and such that there is a set B'

where I U B c B', and such that the same value of maximal flow

corresponds to both sets, I U B and B'.~P

(b) If (a) is satisfied, check if in a set Lq of the same sequence,

where q < p there is at least one state variable x. such that

x. e B'/(I U B).
J p

(c) If (b) is satisfied, erase from the list of Operation 1 the sequence

being currently checked.

0 Operation 3.

In order to justify Operation 3, consider first the following notation:

S I}., { I p-I(B)} ,... (4,1)

The sequence (4.1) represents all trajectories in the state space character-

ized by the sets of states travelling on interior arcs in every time interval.

In (4.1), the notation (Ip 1 (B)) means that the set of states B is such

that B C L, that is, the states in B leave the boundary at t p. Notice

that B C I .

Now consider the following sequence satisfying (a) and (b):

(I .} . .{ p}), {I p-1(B)}...{I q},{(I q-l(X j 1} ,Ilq 2} ,I... (4.2)

where xjcB'/(IpUB)

Now consider the following sequence:-

(If-l 1,.. ,p, {Ip-l(B)),...,{Iq JX),{Iq-ll Iq.2},... (4.3)

The only difference between sequences (4.2) and (4.3) is that in (4.2),

x. leave the boudary at tq while in (4.3) x. leave the boudary at tq.l ,

Notice that the existence of a sequence as (4.3) is insured since Operation I

-62-

requires the listing of every possible sequence.

We claim that all feedback control regions constructed from sequence

(4.2) are also constructed from sequence (4.3) so that sequence (4.2) is redun-

dant. The reasons for that appear in the following argunents:

By the considerations of Part D in Section 2, we know that in order to

find all optimal solutions (to construct the corresponding feedback control

region) corresponding to the time interval (t ,t), we find all optimalg+l g
solutions corresponding to the states in Ig leaving the boundary, and among

these solutions we choose those that maximize the expression

X A (t g) .

ig

Now it is-not difficult to see, that by Theorem 3.2 the costate values in both

sequences (4.1) and (4.2) are the same at all times. Moreover, note that if

all optimal solutions corresponding to the states in I U B leaving the boundary
p

are also optimal solutions to the problem corresponding to the states in B'

leaving the boundary, then all optimal solutions corresponding to the states in

I U BU D leaving the boundary (for some set of states D) are also optimal
p

solutions of the problem corresponding to the states in I V B VD VE leavingp

the boundary, where E CB'/I U B. The above is easily seen by noting that all

minimal cuts corresponding to I U B are also minimal cuts of the network cor-P

responding to I pU B U E, therefore all minimal cuts corresponding to I pU B U D

are also minimal cuts of the network corresponding to I pU B U D U E.

Now returning to sequences (4.2) and (4.3), we have that

1 2 . I 1 I Vx. (4.4)
q q j

(where I1 and 12 denote the sets of states travelling on interior arcs inq q

the tim interval (t q+li t q) in sequences (4.2) and (4.3) respectively).

LMp

- 63-

Moreover we can write

1 1
1 q (Iq/I pUB),'I UB , (4.5)Iq qpp

so that from (4.4) and (4.5) we have

2 1
I (Il/I C B) U I UBUx. (4.6)
q q p p 3

But from the above reasoning all optimal solutions corresponding to (4.5) are

also optimal solutions of the problem corresponding to (4.6), moreover:

g g

Therefore the sequence (4.2) is redundant.

Example 4.3

If in example 4.2 we obtain the same maximal flow value in the cases

corresponding to the sets of states xI and (xlx 2,x 3 l leaving the boundary,

then we erase from the list of example 4.1 the sequences numbered (1), (2), (3),

(4), (7), (10) and (11).

0 Example 4.3.

Operation 4

For every state variable combination Lf leaving the boundary at tf

for which there is not a combination L' such that Lf C L' , and the maximal

flow values corresponding to both combinations are equal, find all the optimal

basic solutions of the corresponding linear programming problem starting with

an optimal (extended) basic solution as explained in Parts B and C of Section 2,

and using the algorithm provided in Part B of this section.

O Operation 4.

The results obtained from Operation 4 are the basic data needed for con-

structing feedback control regions (the construction is carried out in Opera-

tion 5).kMai

- 64 -

Operation 5

For every remaining sequence (after execution of Operation 3) from the

list of Operation 1, carry out the following steps for every boundary junction

A - time t , in a sequential order, starting at t
P f

(a) Set

X. (Tr) X -1 EI x. £-% 1 p-i

T (--,t p)

- 0, 'vx i Bp. 1

T1 t P19 p-

with

Ai(tf) = 0, {xi/ieN}

(b) Set arbitrarily t - t = 1
p p-i "

(c) From among all solutions {y*} obtained in Operation 4 with Lf = Ip- 1

choose those that maximize the expression:

A i (t -)y

(d) Transform the solutions obtained in (c) to the set of rays V (see

[1], p. 58) and construct the convex polyhedral cone:

where C (.) denotes the convex hull.

(e) Consider all sequences that are identical to the current sequence

until the current time interval (t 1 ,t). The costate values of

such sequences in interval (t p19 tp) will be identical to the co-

state values corresponding to the considered sequence, and the cor-

responding feedback control region will be built only once. This

- 65 -

insures that we avoid multiple construction of the same control region.

3 Operation 5.

Step (a) follows from the costate trajectories depicted in Theorem 3.2.

Notice that in the sequences left after Operation 3, the costate x starts

to change only from the boundary junction time in which its corresponding

state leaves the boundary, so that the calculation of the costate values is

an easy task. Step (b) follows from the fact that there is only one subregion

per region with respect to any set of state variables leaving the boundary (as

proved in Theorem 3.4), so that we may arbitrarily choose the boundary junction

times. Step (c) follows from Part D of Section 2. Step (d) follows from the

Constructive Dynamic Programing Algorithm stated in [2]. Finally, step (e)

is a simple conclusion that saves superfluous computational work.

B. The Method for Finding all Solutions

to the Linear Programming Problems

One of the major problems in the implementation of the algorithm

described in Part A of this section arises from the need of finding all solu-

tions to every linear program required in Operation 4 of the algorithm. In

geometrical terms, the problem is to find all the extremal points of the con-

vex polyhedron formed by the intersection between the enlarged Hamiltonian

and the X-constraint figure lying in the positive orthant of the y-space.

Fortunately, the above linear programs are in general highly degenerate so

that as it was clarified in Part C of Section 2, the number of finear programs

we actually have to solve is greatly reduced.

The problem of finding all solutions to linear programs has been

widely investigated. See for example [Bl], [Chl], [Ch], (M4], (R1]. In [B2],

we find a report on computational experience gained using the algorithms

- 66 -

presented in [Chl] and (Ch2], as applied to optimal routing problems. From

this report it is seen that even for very small size networks the amount of

computation and memory required is excessive, and also the numerical sensitivity

of the algorithm is extremely high.

We proceed now with the description of the method to find all the solu-

tions of the linear programs that we propose and later we shall discuss its

advantages. The algorithm is based on the method of pivoting on networks.

For a review of this method the reader is referred to Appendix A.

Starting at an optimal extended basic solution, the algorithm picks a

nonbasic link and looks for the cycle formed by basic links and the considered

nonbasic link. There always exists such a (unique) cycle since every extended

basic solution corresponds to a spanning tree in the network. In order to

find the cycle the algorithm utilizes a labeling technique that will be

described later on. After finding the cycle we perform a pivot on it, reach-

ing in this way either a new extremal solution or, if the cycle is degenerate,

another representation of the original extremal solution. If the degeneracy

is of a high degree, we may find with a single pivot several different representa-

tions of the extremal solution. Every new solution or representation obtained

is numbered and kept in memory if and only if it does not exist there already.

The above process is performed for all nonbasic links corresponding to every

solution and/or representation kept in memory until it is not possible to

reach a new solution or representation. In this way we insure that at the

end of the process we had reached all optimal solutions. Since we are not

concerned with different representations of extremal solutions when construct-

ing feedback control regions at the end of the process, we can delete these

representations retaining only one representation per extremal solution. In

order to start the process, we reach an initial extended basic optimal solution

as depicted in Parts B and C of Section 2.

- 67 -

Now, to understand the need of searching also the different representa-

tions of every extremal solution, let us consider the following example.

Example 4.4

Given the network depicted in Figure 4.1, the problem is to find all

optimal solutions corresponding to all states leaving the boundary.
c c21 2 c 3 2 =2

Figure 4.1 - Network of Example 4.4

After finding the minimal cut of the network (recall that to find a

first optimal basic solution, we add a new node (the source) and links with

no capacity constraints connecting the source with every node of the network,

and we apply the maximal flow algorithm), we choose the first basic optimal

solution shown in Figure 4.2-a. From this solution and by pivoting on the

cycle corresponding to the nonbasic link (3,2), we reach another extremal

solution as depicted in Figure 4.2-b. Note that from the first solution,

pivoting on the cycle corresponding to the nonbasic link (s,2) does not lead

to a new solution but just to another representation of the first optimal

solution. Clearly, from the representation of the extremal solution of

Figure 4.2-b we cannot reach a new extremal solution. Only starting at tie

representation shown in Figure 4.2-c can we reach the new extremal solution

depicted in Figure 4.2-d.

-68-

I 0

S, 0

(~ ~- --- ;- <

(a) (b)

- - - - nonbasic link

basic link

0S

0 f20

....3 ,- - -- N 03-- -
0 0 2 0

(c) (d)

Figure 4.2 - Obtaining extresml points in the network of Example 4.4.

O Example 4.4.

Iot w.e describe ;te labeling technique used by the algorithm to find

pivot cycles. First we assign a number to every node and link in the network.

For example see Figure 4.3:

/3

8

67 9

Figure 4.3 Nubering nodes and links.

- 69 -

Second, we define the following arrays:

C(I) = Capacity of the link I.

F(I,J) - Flow on the link I at the J-th solution.

BASE(I,J) = Type of the link I (basic or nonbasic) at the J-th solution.

LOUT(I) = Exit node of link I.

LIN(I) = Entrance node of link I.

where:

1 if the link I is basic

BASE(I,J) =

0 if the link I is nonbasic

Now if link K is nonbasic, in order to find the pivot cycle we search the

arrays LOUr(I) and LIN(I) and we find all the incident links to node

LIN(K) (where LIN(K) is the entrance node of the link K). After find-

ing all these links we consider only those that are basic, and for every one

of them we carry out the same procedure until we obtain a basic link entering

(exiting) into (from) node LOUT (K). To every link searched in the above

procedure, the number of the preceding link of the cycle is matched so that

at the end of the procedure a well-defined cycle is obtained. After finding

the cycle, and by checking the arrays C(I) and F(I,J) we obtain the maximal

change of flow on the cycle and we perform the pivot. As said before, when

the cycle is degenerate, we reach all possible different representations by

performing "dummy" pivots, that is declaring the nonbasic link as basic, and

the basic link that does not allow to change the flow as nonbasic.

Standard labeling techniques assign ntmbers only to the nodes of the

network so that the links are identified by a two-dimensional array (I,J),

where I is the exit node of the link and J its entrance node. However,

-70

note that in order to use this technique we must define in our case two arrays

that are three-dimensional, the first accounting for the flows on the links,

the second for the type of links. kreover a two-dimensional array for the

link capacities is needed, thus making use of an excessive and wasteful

amount of memory, especially when the number of solutions and representations

is large. Clearly, by defining only two-dimensional arrays (as we do) we

save a large amount of memory. Notice also that, when finding all the solu-

tions to the linear programs by means of pivoting on networks, every solution

or representatiou is identified by a solution vector and a link-type vector

instead of a tableau (as is done when utilizing simplex methods) saving again

a great deal of memory.

The main problem of the method is that we do not know a priori the

number of solutions and representations of the linear program, so that we do

not know the dimension needed for the arrays that will contain the solutions

or representations. Truly, we can find an upper bound to the number of solu-

tions and representations since every basic solution corresponds to a spanning

tree and it is possible to calculate the number of spanning trees in the net-

work, however, not every spanning tree corresponds to a feasible basic solu-

tion. For example, in the network depicted in Figure 4.4 a non-feasible span-

ning tree is shown.

- - -.... nonbasic link

Us2 -2basic link
12 4= . 2

- -2Sb i - -2 b 2 m--2

Figure 4.4 - Example of a non-feasible spanning tree.

- 71 -

Therefore, in general, the number of feasible solutions is less than

the number of spaming trees, and for practical purposes the dimension of the

arrays having a coordinate defining the number of solutions and representa-

tions is estimated and fixed accordingly.

We present now several examples that will test the efficiency of the

method. All examples apply to the case when all the states leave the botudary

(that is, the case in which we obtain the maximal number of solutions) and

they were solved by means of a Fortran computer program (see Appendix B)

based on the method described above. All programs were run on an IBM 370/168

computer, and for every example the maximal memory region provided was S12K.

In Figure 4.S we show the tested networks with the corresponding

numbers of optimal solutions and representations, and the CPU time consumed.
3

N3 Number of solutions: 24

Number of solutions
4 and representations: 48

CPU time: 1.78 sec.

(a)

2 r ,. . Ntm~er of solutions: 20
2Number of solutions

and representations: 58
2 CPU time: 1.59 sec.

(b)

- 72 -

2 3 4 Number of solutions: 60

Number of solutions

3 4 2and representations: 156

CPU time: 5.41 sec.

(c)

1 6 5

334 Number of solutions: 34

Number of solutions
4 and representations: 78

CPU time: 2.2 sec.
7d

Cd)

1 5

3 5) Number of solutions: 68

Number of solutions

6 2 and representations: 184

CPU time 7.41 sec.

(e)

Figure 4.5 - Example of finding all optimal solutions.

From the examples of Figure 4.5 we obtain an insight into the change in the

number of feasible spanning trees when changing capacities of some links (see

4.5a and 4.Sb) and the great increase in the number of feasible spanning

trees when adding a single link to the network (see 4.5b and 4.5c, 4.5d and

4.5e).

73-

Note that since the capacities are integers and the only arithmetical

operations in the method are additions and substractions, no numerical sensi-

tivity problems arise.

Now we anal .ze briefly the complexity of the method for finding all

optimal solutions. Consider first the non-degenerate case, that is, the case

in which every optimal solution satisfies:

yi > 0, i = 1,2,...,n , (4.7)

where n is the number of nodes in the network. Denote also by t the

number of links in the network. Clearly, if (4.7) is satisfied at every

optimal solution, the links corresponding to the slack variables "y" are basic,

and the remaining links are non-basic. Since the flow on a non-basic link

(ij) must be only zero or ci, the number of optimal (basic) solutions

is 2(1-n). This explains the great increase in the number of solutions when

adding a single link to the network. In the degenerate case we can only

estimate an upper bound for the number of solutions and representations. This

upper bound is given by multiplying the number of spanning trees of the net-

work by 2(L-n). The conclusion arising from the above arguments is that

owing to its exponential complexity the method can actually be implemented

only for relatively small networks.

C. Example of Feedback Solution to the Dynamic Routing Problem of a

Single Destination Network with all Unity Weightings in the Cost Functional

In order to illustrate the algorithm described in Part A of this section

we present here an example of a four-state variable network for which we execute

some of the operations of the algorithm. The network is depicted in Figure 4.6.

- 74 -

3

4

Figure 4.6 - Network to illustrate the algorithm.

Operation 1

In this operation we list all possible sequences of states leaving

the boundary. Since there are four states, we obtain Q(4) = 75 different

sequences.

t tf tf tff-3 f-.2 __. It _

x4 x3 X2 Xl

x3 X4 x 2 X
* x2 x4 x 3 x1

x 4 x2 x 3 x1

x2 x 3 x4 5.
x 3X X 4 X,

x4 x3 x1 x2

x3 x4 , x2

x4 X. x3 x2

X, X4 x3 x 2

-75-

xx 3 x 4 2

x 3X X 4 X2

X4 x2 X, 3

x2 x4 X, x 3

X x x4 X, 2 3

x 2 ,x 4x3
2 1x 2 4 x3

x 3x 21X 4

X23 X1 X

X 3 X, X2 x 4

3 4

4 X ,X ~3 X4

3 22 X4 X,

X2 x 3 X 4 X,

4X, 3 X2

x4 Xi'X3 X 2

x 4 XVX2 x 3

x2xV'X 4 x 3

-76-

x 1 x 2x4x 3

2c x
3 XV24

6 x 1 ,x3 X

x P4x2 "1

xx 4 x3

X2x3 x4X,

x 3$x4 ,x2

XV4x3 x2

x 4 x

7 xV3X,

84 x3x 4X

4 X XV1 X 3

X24 xlVx 3

x 3X xilIx 34

9 X2 x 3 l 4

-77

x4 1X4 2"

x x

3 1 X

Xx 3 ___2_____4

10 x2X

11 x 1 x 2 X3 1x 4

x2,x3,x4 x1

12 X, x ,x4 2

x1,x2,x4 x 3

U-13 X, ' ______4

X2,x 4 X

14X2Vx4 XV1 X3

x1,x4 x 2,vic3

is x1,x 2 x 3 x 4

16 2 X, X39X 4

17 ,x2 S4

x 3 xi__________
18 x x2,xx 4

- 78 -

Operation 2

Here we calculate the maximal flow values of the networks corre-

sponding to all possible combinations of states leaving the boundary.

This is carried out by using the Maximal Flow computer program provided

in Appendix B.

In the case where all states leave the boundary, there is no need

to apply the computer program since, as stated in Part B of Section 2, the

solution is trivial (see Figure 4.7).

2 22

Figure 4.7 - Network representing all states leaving the boundary.

The solution is:

Uli m ui6 ci6 , i = 2,3,4,5

uik = 0 k - 2,3,4,S

The value of the maximal flow is 9.

ARC =L 0 CAlAC I TY

(1.4) 0")

(105 2
(2,3 0 2.

(2.5) C L
(394.) Cl

(3.6) ~
(4.3)

(4,5) 0

T-WE VALUE OF THE MAX I MAL FL0, I

ARC FLOW CAPAC I TY

(192) 5 9

(1.4) '

(1.5) 2 .0

(2.3) 2 2

12,5) 0 3
(2. v61) 3 ,' .3

(. 44) 0 1

1396) 3 4

(4.3) *

(THE V A 2 * A

T14E VALUE 07 THf MAXIM&IL SnLO"W IS *t

80 -

ARC FL)W CA-'AC ITy

(192) 30
(1.3) 4 ,)4

(2 3) -

(2.5) -

12.6) 7 -1

(3,4) 0 1

(3,6) 4 * 4

(4.3) e1

(4.05) 0

(5.6) P * -

TW. VALUE OF THF MAXIMAL F LOW IS 0

ARC FLOW CAPACITY

13) 9
I (1,4) 0

(2.3) 0 P

(2.5) 2 :3

(2.6) 3 * J

(3.4) 0 1

(3.6) * * 4

(4,3) 0 1

(4.5) 0 a.

(56) 2 ,

T3E VAL4(J O) TME MAXZAL FLOW IS

-81

AQC FLOlW CA~skC17Y

4104)

(2.3) 0

(2.5) 0 3

(2.6) 0 3

(4*3) 1 1

4.5) 0

15.6) 2

V9 VALUC OF THE M4AXIMAL FLOW IS 3

ARC FLOw CAPACITY

11.3) 4 9

(1.5) 29'

(293) 0

(201%) 0

(2,6) 0 3

1396) 4 1 r*

(3.4). 0 f#

(43)0 t

(4.5)0

(6.6) 2 2

TME VALUIE OW THE MAX104AL FLOW 15 6

S82 -

ARC FLOW CAPACITY

(1 .3) 4 99

1.4) 2-

(2.3) 0

(2.5) 0

(2va3 0
(3.4) 0 , 1

(3.6) 4 4

(4.3) 0

(4.5) 2 * 2

(5.6) 2 2

THE VALUE OF TH9E MAXIMAL FLOW I5"

ARC L L)W CAPACITY

(12) 59

(1,5) CA

(2.3) 2 - -

1295) 0 3

(2.6) . * 3

(3.61 2

(4.3) 0 1

(4,5) 0 ?

(5.6) 2 *

TIE VALUE OF THI* MAXIMAL FLOW IS 7

-83

'ARC FLOJW CAPAC IT Y

(2*3) ~
(29S) 2

(3e4) C

(3.6) 3

(5.6) 2

THE VALUF Of TME MAXIMAL FLOW IS~

ARC FLOW CAPA~CITY

1 *3) 0

(?.5) 2 ci

(296) 3 * :3

(?06) 4

4493) 0

(4043) 0

(5.6) 2

T9IE VALUE OF THE MAXIMdAL FLOW tS

-84-

APC fL.)w CA PAC ITY

(1.5) . 9'0

(3.6) 4

THE VALUE OF THE 04AXIMAL t-LUWy IS 2

THI S PACX9 IS B.ES T Q3ATJ T-Y M4 "1 71CABLE

ARC FLOW CAPACITY

(2.3) 02

* 12.5) 0

(2.01 0 3.

(394) 0 1

(9.6) 2

THE VALUE OF THE OAXIMAL FLOW IS

ARC KL!IW CAPAC IT'r

(103) 5

(2.6) 0

THE VALUE OW THE 4~AXJP4AL FLOw IS S

P~IS PA.G-;;

AQC FL -W CAPAC I Tv

(1.2) 99

42o3) 2 6 2

2 3

(.3*4) 0

(3.6) 2z

799 VALUE OlP IMF MAXIMAL FLr)W i'D 7

-86-

The links belonging to a minimal cut are marked by asterisks (*) in

each of the above programs.

Now we summarize the results we obtained:

D k(D)

x ,x 2 ,x3 ,x4 9

X1 , 2 'x3
9

x 1,X,x 4 9

xl,x2 9

xI , x3.,x4 8

:* xlx 3 8

x. 1,x4 7

x1 7

x2 ,x3,x4 6

'V" x2 , 3 6

x2 ,x4 6

x2 5

x 3 , x 4 3

x 3 3

x 4 2

This table will assist us in the execution of Operations 3, 4 and S.

- 87 -

Operation 3

In this operation we erase redundant sequences from the list of Opera-

tion 1. The Operation is made by searching all the sequences of the list and

by checking if the conditions of redundancy are satisfied considering the

results obtained in Operation 2.

In our example we obtain that only 18 sequences from the 75 listed in

Operation 1 are nonredundant. These sequences are marked and numbered in the

list of Operation 1.

Operation 4

Here we find all basic optimal solutions for all combinations of

states leaving the boundary. By the sumarizing table of the maximal flow

values we realize that it is enough to find all the solutions for only five

combinations of states. Notice that in the cases where only one state leaves

the boundary the solution is unique, and it is given by the result obtained

in Operation 2. The five networks for which we have to find all optimal

solutions correspond to the largest combinations of states (containing at

least two states) having different maximal flow values.

Using the results of Operation 2 (where we localize minimal cuts) and

by the considerations of Part C of Section 2, we obtain first basic optimal

solutions to every one of the networks, as shown in Figure 4.8.

- 88 -

J87

12

4 0 2 2

2 AJ32 4 5 5,

(a) (b) (c)

4 2 2

3 4-T

(d) (e)

Figure 4.8 - The first optimal solutions

Applying the method for finding all the solutions described in Part B

of this Section (the computer program implementing it is provided in Appendix B),

on the above networks, we obtain the following results:

-89 -

30 0 0 0 0

52 0 0 0 0 0

3 3 1 0 1 0 0

3 4 2 a 0 0 0 2 0

5 4 0 0 0 0 2

5 2 0 0 2 0

720 L. 0 a 0 2

43 4 0 0110 0

3 5 0 1 010 1 0

3 3 3 00 0 1 2 0

5 31 Q (0 10

3 51 a 0 2 0

5 2 0 0

0 2 - 1 0

513 0 2 0 ? 0

7 1 1 0 2 0 1 0 2

531 0 2 1 0 2 0

540 0 0 1 1 0 2

45 0 0 0 10 1

3 4 2 0 0 11 2 0

7 2 0 0 p I 1 0 2

6 3 Ci 0 2 0 1

5 2 2 0 2 1 20

WNSMER OF DC1F'rP4T S(1.UTJCNS P 4

~4MSfr OF otFP'ERENT SOLUTIONS AND =!PrcNTTTN

(0)

*fl-AO85 160 MASSACHUSETTS INST OF TECH CAMBRIDGE LAS FOR INFORMA-ETC F/B 17/2

MAY 80 N JODORKOVSKY. A SEGALL N001-75-C-1183

UNCLASSIFIED LIOS-R-88 ,t.

Iommomo I U

D I = 11II1-.2

11111111112-
IIIIIIIIo

11111IL 25 111111.4 1.6

MICROCOPY RESOLUTION TEST CHART
IA ,.,AL O... .

900

WNVER0 OF LD1FFE~iENT sriLui lrN- 3

MUMSEIR OF O1FCFE9?FNT 'LU I ICN~t AN!) REPPrSNTATIONS:

(b)

'5 2 0

7 0

HUW8FP OF DIWaFrREPT SCLUTT('IONL

NLMBFR OF DIFFFOENT bOLLPTICNL. AND0 PORESE4JTATIONS : p

7--,

91-

(193) (1,,4) I19") (.J 94) (49.3) (405)

S 0 0 0 0

3 1 1

2 0 0 .0 2

4 0 2 1 i 0

0 1 1 0 1

3 3 0 1

5 £ L 1 0 2

4 2 2 1 1

NUMBER OF DIPFPRPNT SOLUTIf :

NUMBER OF DIFFEWINT SOLU71ONS AND REPRFSENTATIONS 2 14

(4)

(104) (I it-s) f ,,.)

1 2 0

3 0 2

NUMBER OF DIFFERENT SOLUTIONS 2

MUMI E OF DIFFERCNT SOLUTIONS A 4D PRESENTATIONS

(0)

:I(e

- 92 -

Operation S

In this Operation, the feedback control regions are constructed with

the aid of the results of Operation 4, and by calculating the costate values

in every interval of every (non-redundant) sequence. In this example we re-

strict ourselves to finding the costate values since the remaining steps do

not represent interesting features of the algorithm.

As we said in Part A of Section 4, when developing the algorithm it

turns out that the calculation of the costate values is almost trivial for the

non-redundant sequences. In the following table we rewrite these sequences

where under every interval we write the corresponding costate vector

(, 2,x 3,x4). We have taken arbitrarily tl 1 -tp - 1, and the states on

every interval correspond to Ip,. that is states travelling on interior arcs.

tf-4 tf-3 tf-2
tf-1

1 xl,x2,x3',x4 xl,x3,x4 x4 x4

(3,1,2,4) (2,0,1,3) (1,0,0,2) (0,0,0,1)

2 '1 ,x2 lx3,x4 xl,'x3 x4 x3 'x4 x4

(2,1,3,4) (1,0,2,3) (0,0,1,2) (0,0,0,1)

3 x1 ,x2 ,xx 4 x2 ,x3 ,x4 x3 ,x4 N

(1,2,3,4) (0,1,2,3) (0,0,1,2) (0,0,0,1)

4 x1 ,x2 ,x3 ,x4 x2 ,x3,x4 x2

(1,3,2,2) (0,2,1,1) (0,1,0,0)

5 xl,x 2,x 3,x 4 x2,x3,x4 x4

(1,2,2,3) (0,1,1,2) (0,0,0,1)

6 xl,x2x3,x 4 Xl,X 3 ,X4 N

(2,1,2,3) (1,0,1,2) (0,0,0,1)

- 93-

7 fixp x4 P4X

(2,1,1,3) (1,0,0,2) (0,0,0,1)

8 x lx 2,x3,x4 xV4X

(1,1,2,3) (0,0,1,2) (0,0,0,1)

9 x1,x2,x3,x4 x1 ,x3,x4 X1,x4

(3,1,2,3) (2,0,1,2) (1,0,0,1)

10x. 1 x2 ,x3,x4 x1,x3,x4 Yx3 4

(2,1,3,3) (1,0,2,2) (0,0,1,1)

11 x1,x2,x3,x4 x2,x3,x4 x3,x4

(1,2,3,3) (0,1,2,2) (0,0,1,1)

12 X,x 2,x3,x4 X2

13 xltx2 Px3,x4 X

14 x1,x2,x3,x4 XX

(2,x1,,2)3,14 0x3 1)

16 XJIX 2 'x 3 'X4 X1 x3X4

17 x1 ,X2,x3,x4 x2"x3 'x4

(1,2,2,2) (0,1,1,1)

18 X1 ,X2,x3,x4

I - 94 -

Section 5

CONCLUSIONS

We presented a new approach for the construction of a feedback solu-

tion to the minimal delay dynamic message routing problem for single destina-

tion networks with all unity weightings in the cost functional. The approach

seems to be the most appropriate one for tackling the problem, since it fully

exploits the special structure of the constraints matrix and also provides a

physical meaning to the problem by working in a framework of networks rather

than in an abstract mathematical one.

Several improvements have been achieved compared to previous results.

The first is the great reduction in the number of linear programs to be solved

by taking advantage of the high degree of degeneracy that in general character-

izes this kind of problems. The second is the derivation of a suitable method

for finding all solutions to the linear programs, that does not require the

application of simplex techniques to achieve a first optimal solution but only

the application of a simple algorithm of maximal flow. Nbreover, the method

reaches all the remaining optimal solutions by pivoting operations on a net-

work, saving in this way a great amount of computer memory. The third improve-

ment achieved is that the new approach provides the tools for analyzing the

complexity of the problem, giving us an idea of the number of computational

steps required for obtaining the feedback solution to a given network.

Further research is required for Operation 1 of the algorithm. Since

not all sequences listed in the above Operation are used for constructing

feedback control regions, the question is whether a method can be provided to

avoid the listing of those sequences not contributing to the construction of

- 95 -

the feedback solution. It also seems that the algorithm my be applicable in

the case when constant inputs are present. Hiwever, further research is needed

to investigate the influence of these inputs on the different Operations of the

algorithm.

Finally, it also remains to extend the application of the approach to

the more general case of multidestination networks.

- 96 -

Appendix A

Basic Concepts of

Graph Theory, Maximal Flow and Linear Programming in Networks

1. Basic Definitions

Directed Graph: A set of nodes N = (1,2,...,n} and a set of directed

links L - {(i,j),(k,x),...,(v,w)) connecting pairs of nodes of N.

Path: A series of different nodes in the graph where between two

successive nodes of the series there is a link connecting them.

Cycle: A path to which a link is added connecting the first and the

last node on it.

Connected Graph: A graph in which there is at least one path between

any pair of nodes.

Tree: A connected graph not containing cycles.

Spanning Tree: A tree containing all the nodes of the graph.

Network: A connected graph in which to every link (i j) corresponds

a positive integer cik called the capacity of the link.

2. Maximal Flow on Networks (see [Hl],[B3]).

We define two special nodes of the network; the first is the source

Cs) and the second the destination (d).

The concept flow on the network is defined as follows: A set of non-

negative integers uik is called flow in the network if the following con-

straints are satisfied:

- 97 -

if j s
u.. U 0 if j s,d (A. 1)

if if d

0 < u ij cij , V(ij) eL . (A.2)

The Maxial Flow Problem is defined as:

Maximize f (A.3)

such that (A.1) and (A.2) are satisfied.

A Cut separating the nodes s and d is denoted by (X,X) and

defined as follows:

(X,i) a {(i,j)cL / ieX,jcX} ,

where X is a set of nodes in the network containing the node s but not

the node d, and i- NIX.

The Cut Value is

C..

A Minimal Cut of the network is defined as a cut having minimal value.

Theorem (The ximal Flow-Minimal Cut, (see [Fl]))

The maximal flow in a network, between the source and the destination

equals the value of a minimal cut separating the source and the destination.

From the above Theorem follows that if (XH,XM) is a minimal cut of

the network, then at maximal flow we have

uik - cA {(i,j)/ieXMje)

*0 (k,z)/k e ,x e

uk

-98 -

3. Minimal Cost Network Flows (see [B3],[Hi]).

Consider a network having n nodes and m links. To every node i

in the network corresponds an integer bi that accounts for either the

"supply" of flow to the node (if b. > 0), or the "demand" of flow from

the node (if b i < 0). Assume also that the total supply of flow to the

n
network equals the total demand from it, that is b b. = 0. To every linki=l

(i,k) in the network corresponds a number yij > 0 that expresses the cost

per unity of flow on the link.

The Minimal Cost Network Flow Problem is the determination of the

flows on the links such that the supply of flow to the network satisfies the

demand of flow from it at minimal cost. Mathematicaly the problem is stated

as follows (the summations are taken for existing links):

n n
Minimize I Ij u (A.4)

such that

n n

jjl ui j " - l u k i = b i i 1,2,...,n ,(A.4a)

0 < uij <1cij, V (ij) c L .(A4.b)

The constraints (A.4a), written in vector form, are Au = b

Now we investigate the structure of the constraint matrix A: Every

row of A corresponds to a node and every colum to a link, thus the dimen-

sions of the matrix is (nx m). Every column of A has only two non-zero

elements, +1 in the i-th row and -1 in the j-th row, where i and j are

the exit and entrance nodes of the link, respectively. The rank of the A-

matrix is (n-l). To see this, note that every row in A accounts for the

flow conservation on the corresponding node, so that the row corresponding to

node r is given by the sum of all the remaining rows of A with minus sign.

- 99 -

These remaining rows are clearly independent since the deletion of the r-th

row from A leaves at least one colmn having only one non-zero element.

Now we shall deal with the linear programming problem (A.4), when the

links have no capacity constraints, that is we require only uij 0 0. In a

linear programing problem, the variables corresponding to some of the colunmns

of the constraint matrix are called nonbasic variables, or independent vari-

ables, because their values are determined arbitrarily. The values of the

remaining variables (the basic or dependent variables) are determined by

means of the non-basic variables and the constraint matrix. The colums cor-

responding to the basic variables form a square matrix B, called the basic

matrix, and if these columns are chosen such that they are linearly inde-

pendent, and if the variables not associated with columns of B are set equal

to zero, then the solution of the system Bu = b is unique (since B is non-

singular), and the above solution is an extreme point of the constraint figure.

In the case of problem (A.4), it is easy to see that from all links incident

to a node, the flow on one of them cannot be determined arbitrarily but by the

flow conservation equation of the node. If we consider all links on which the

flows are determined by the remaining links of the network, these links form

a spanning tree. The reason for that is that as we said before, the flow on

one of the links incident to a node is determined umiquely by the flows on

the remaining links incident to the node satisfying in this way the flow con-

servation equation of the node. Now the constraint matrix A has (n-1)

linearly independent rows, that is, there are (n-l) independent flow con-

servation equations, so that there are (n-l) links in the network on which

the flow is determined by the flows on the remaining links. These (n-I)

links cannot form any cycles because one can add flows in the cycle without

violating the flow conservation equations of the nodes in the cycle. This

would contradict the fact that the values of these (n-l) links are uniquely

--100 -

determined. Moreover, to every node corresponds at least one such link, there-

fore the links with flows representing basic variables form a spanning tree.

Next we describe how to represent a nonbasic vector (that is, a column

of A corresponding to a nonbasic variable) in terms of basic vectors. In order

to do this, note that every column of A (denote it by a...) is of the form
ae.

-e.

where e and e. are unity vectors in En, the former having a +1 on the

i-th row and the latter having a +1 on the j-th row. Now, by choosing (n-1)

linearly independent columns of A we form matrix B. Matrix B represents a

spanning tree in the network. Now if we choose a nonbasic link, say the link

(v,w), clearly we will have a unique path consisting of basic links only,

connecting the nodes v and w, since the basic links of the network form

a spanning tree. The above path together with the nonbasic link (u,w) form

a cycle (see Figure Al). By determining the cycle orientation as the direc-

tion of the nonbasic link we will have

avw - avj + aj + ... + +-- (w-p) = Q

or

%vw -vj aK -j+..+aWP

iC
o y c e

ai n
ta tion

Figure A Cycle formed by adding a nonbasic
link to the spanning

tree.

-11 -

The method for representing a nonbasic vector in terms of basic vectors

is then as follows: First, we determine the cycle formed by adding the nonbasic

link to the spanning tree, Second, we assign to the cycle an orientation,

according to the direction of the nonbasic link. Third, to all basic links in

the cycle having the same direction of the cycle we assign a -1 coefficient in

the representation and to all basic links in the cycle with direction opposite

to that of the cycle we assign a +1 coefficient in the representation. To all

remaining links in the spanning tree we assign a zero coefficient. The above

coefficients correspond to those appearing in the columns of the Simplex

tableau. As said before, these coefficients are +1, -1 or zero. This property

of the A-matrix is called the unimodularity property and it insures that every

basic solution is formed by integers only, provided that b is an all-integers

vector.

From the above considerations it turns out that in order to perform a

pivot in problem (A.4), it is enough to form a cycle and to increase the flow

on every link of the cycle in the direction of the nonbasic link, until the

flow on one of the basic links becomes zero. This link leaves the basis and

the previous nonbasic link enters the basis. When there is a basic link in

the cycle, with direction opposite to it and with zero flow, we say that the

cycle is degenerate. In this case we cannot perform a pivot changing the

flow on the cycle, but we can obtain another representation of the current

basic solution by removing the link that does not permit flow change frok the

basis and putting the nonbasic link into the basis. If there are two or more

links yielding degeneracy, we can reach all possible representations by apply-

ing the above method.

Next we return to problem (A.4), but now consider the case where the

links do have capacity constraints. It turns out that the problem can be

solved in a maner very similar to the one used in the case without capacity

" 102 -

constraints by making use of the concept "extended basic solution" (see [LI],

p. 48). The idea is to treat the capacity constraints (or upper bound con-

straints) in an implicit way (similar to non-negative constraints on variables).

This method avoids the great increase of dimensionality in the problem, result-

ing from the addition of slack variables to the upper bound constraints. For

example, if in problem (A.4) the A-matrix has dimension (n x m), then adding

a slack variable to each of the constraints (A.4b) yields to a constraint

matrix of dimension (n + m) x 2m. The concept "extended basic solution" cor-

responding to problem (A.4) is defined as a feasible solution in which n

variables corresponding to linearly independent columns of A are basic, and

the remaining (m - n) variables are nonbasic, each having either value zero

or being equal to its upper bound (i.e. its capacity). In the network, an

"extended basic solution" is characterized by a spanning tree, that is, the

graph formed by the links corresponding to basic variables is a spanning tree.

Each link corresponding to a nonbasic variable carries either no flow, or flow

equal to the capacity of the link.

Starting from an initial "extended basic solution", in order to make

a pivot in the network, we choose one of the links that is nonbasic and look

for a cycle formed by it with basic type links. If the flow on the nonbasic

link is zero, then we check if we can increase the flow on every link of the

cycle in the direction of the nonbasic link. If the flow on the nonbasic

link is equal to its capacity, then we try to increase the flow on every link

of the cycle in the direction opposite to that of the nonbasic link. In both

cases we increase the flow until either:

(i) The flow on a basic link of the cycle reaches the value of zero or its

capacity.

(ii) The flow on the nonbasic link reaches the value of its capacity

(or zero).

- 103 -

If (i) occurs first, then the basic link is declared nonbasic, and

the previous nonbasic link is declared basic. If (ii) occurs first, then the

spanning tree does not change and the nonbasic link remains nonbasic with

another flow.

A degenerate situation corresponds to the case where there is at least

one basic link in the cycle with direction opposite to that of the cycle and

with zero flow, or a basic link in the direction of the cycle, with flow equal

to its capacity.

I

- 104 -

Appendix B

Computer Programs

1. Maximal Flow

The Maximal Flow Algorithm of Edmons and Karp is implemented by a

Fortran Subroutine called MAXFL. The algorithm finds the shortest path between

source and destination on which an increase of flow is feasible, determines the

maximal amount of flow that can be pushed on the path and then performs the in-

crease of flow. The algorithm stops when no such path can be found, and lccal-

izes the minimal cut that is nearest to the source.

N - Ntumber of nodes in the network.

C - Two-dimensional array for the link capacities. Capacity zero

corresponds to non-existing links. To links not having capacity

constraints we assign a very large capacity (at least as the sum

of the capacities of the exit links from the corresponding node).

The dimension of C is (N,N).

The program writes the flow on every link corresponding to maximal flow

and the link capacity. In addition it marks with an asterisk the links directed

to the destination that belongs to the minimal cut, and writes the maximal flow

value.

Dimensioned Local Variables

F - Two-dimensional array for the link flows. The dimension is (N,N).

2XT, LAB, NODE and ENODE are one-dimensional arrays of dimension N.

C MAIN PRU6kAM

CO~tMON C*F9XT9LAS(Al).L9K*NvMFL
Ofnl1oo) LL=I*14
RFAD(591Q) N9((C(I .) .Jw1,P4)*1I NR

00 1 J.11N

00 2 Jalem
IF(CC 1.411101*29.101

101 IF(C(J9NI)102 .2.10.'
102 F(1.J)=CfJ*N)

P(J*N) aC(J*Nl)
2 CONTINLN!

CALL MAXFi.
WP ITE (6% 14)
00 3 1=19H
00 3 Jal 9H
IF(C(1.4) 1104.3. 103

103 00 4 11=19KC

4 CONTINUE
GO TO too

105 0O 5 J11.*L
JF(J-XT(411)5v107*5

s CONTINUE

GO TO 3
10? WPTTEC6912) I.J*iPCI.J)*C(1.4)
3 CONTINUE

WRITE(6*13) MFL
11 FORM4AT (1.9K.* (' * I1.*. II' *0 7X. 12.?X,1 2)
12 FORMAT(/.9Xe*(* *11,%',11.@p)'.7X9i2.3X.**,3X.12)
13 FORMAT(//f/92X*OTHF! VALUE OF THE MAXIMAL FLOW IS6914)
14 F0RMAT(1K1.*9X.'ARC'.l~.'FLOV'.3X.'CAPACITYS)
10 FORMAT(3612/36!2)
1000 CONTINUE

STOP
E NO

106-

SUBRUUTINET MAXFL
INTFGFQ C~-.)r(hob) XT(6).NODE(I6).BNCflE(6).DELTA
COMt4ON C9FXT9LA?(bJ.L*K9M*MFL

107 1=1
K =0
Lao0
00' 7 JwI9N

7 SNODE(J)=O
NODE(l1)-90

ld 00 1 J=l.94

OFLTA=IF lX(Ai!FLDAT(K1)) 3.
IFICCI .J))1009100. 101

101 KIC(IsJ)--F(IJ))1O0.100.10p
102 IF(NOrF(J))1, 103*1
103 K-K+I

LABI KYUiJ
IF(C(1.J3-4(I1J)-ODELTA)10591049104

105 DELTA-CCIj)-ru.qj)
10.4 MODE(J)UDELTA

SNOOE(J)=1
lF(J-N31 .1?!,)

123 J1:-J
106 lP4I-1)10891O7.104
108 I=8NODE(JI)

109 F(tJ1)=F(1.J1)+DELTA
120 JI=I

GO TO 106
110 F(JI .1)=F(JI .I)-Ot-LTA

GO TO 120,
too IF(CJp1)1.1.111l
III IF(F(J.13)1 .112
112 IF(NO~rE(J?)1,1139l
113 K-K+1

LAR(K)J
IF(F(J*1)-DFLTA)1149I14*I15

114 DELTA-F(Jel)
IIS MODE(J)=-OELTA

9B40DE(J)zI
I CONTINUE

LwLti
IF(K-L) 116. 117.11?

117 I-LAB(L)
GO TO 118

116 LOO

00 3 12,*N
O 4 J=1.K
IF(LAB(JI-1)49394

4 CONTINUE
L L +-I
XT(L)-I

3 CON4TINUE
DO 5 1=l9K
DO 5 Jz1.L
MMLAB(I
MNXT(J)

11* MFL=MPL*F(NNlI
S CONTINUE

RETURN
EN

- 107 -

2. Determination of all Optimal Solutions

The algorithm described in Part B of Section 4 is implemented by a

Fortran Computer Program composed of two subroutines and a main program.

General Flow-Diagram

MAIN PROGRAM

Reads data

Chooses a nonbasic link

Filters representations

Writes results

SUBROUrINE CYCLE

Finds the cycle

corresponding to the

nonbasic link chosen

in the main program.

SUBROWrINE PIVOT

Finds the permissible

change of flow on the cycle.

Performs pivot to obtain a

new optimal solution or

representation.

M - Number of network links.

C - One-dimensional array for the link capacities. The dimension

is M.

F - Two dimensional array for the flows on the links at the current

optimal solution. Its dimension is (MN), where N is the

- 108-

estimated nu ber of different solutions and representations. A

first optimal solution must be supplied to the program (that

obtained from the maximal flow algorithm) that is F(Il).

BASE Two-dimensional array that determines which links are basic and

which nonbasic at the current solution. Its dimension is (M,N).

If link I is basic then BASE (I,,) = 1, if it is nonbasic

then BASE (I,-) - 0. The basic configuration of the first optimal

solution must be provided to the program, that is BASE(I,1).

LOUt - One-dimensional array for the exit nodes of the links.

LIN - One-dimensional array for the entrance nodes of the links.

The program writes all the extremal optimal solutions and their number.

In addition it writes the number of different solutions and representations

searched during the execution.

Dimensioned Local Variables

DIRPF, BFR and LAB are one-dimensional arrays of dimension M.

-109

C DETERMINATIONJ OF ALL 10LT1OAL -',flLUT1P'JS - '4A1N PQrRlAM
TNTEGEP CCle(9i; v"~r

-REAO(5.10) h

RFA015.l 1) (CI~i~

Kal

Npa 1

I J10O
2 J1ZJ1+l

IF- (4$ASF(JtI(),GT.C 1' - 2
CALL CYVCL'

00) 200 J=19N

P.~00 CnNT INUEF
GO TO 2

to C0 CONTI NUE

12-12+1
GO TO 2

IF(1.*GE"lGO TO I

WRITEC 6.16) MR
to FORt4AT(12)
it P0If*AT(3bI2)

14 FORMAT(/5X*9(12%(-W)I

16 FOR?*AT(///2X9N4M.~-1-E UF DIFFCNT FMIUTIONS ANt) :;F0R-SPNTArT.O4S

GERUG SU!,CHK
S too
E ND

SIM'POUT1NE. DIVOT
INTFGF-P C(0)9FPe99So
COMMON Kv, K.?90FLT*J1.11,C *LOUT(o) 9L N(0 9F9 AIRIE91 R, ORwp.M.Na

100 F(I*KIP=V(I9K)
* 12al1

I PDR(t)~.), Trl 2

GO TO 3
2 F(t1,KI)=F(11I*K)+DELT
3 IWr(TtaEO.JI)GO TOA

GO TO I
I'rfFrI2,KI).e0.C('1)4',O TO
I~rFft(2.K1)eEfQ.O)fO Tr) 5
12 .OP R f12k
GO TO A

S 00 200 TzleN
200 SASf41IK1JwAS~fI.KI

BASE(JI.IC1Iul
FJASErf29K1)*o

D~O 400 1S1.K2
00 3%00 j*19!m
11F(J.ki)o.E.&(Jet))fv TO 400i

IF(85F(JK1).~.~ACJ~l)~"rn Aoo
300 CONTIN.UE

K ISK 1-1L400 C01T INe

110

K 5UPQU1NE CYCLF

L=OC

J2=j 1
00 100 11.em

100 L#A(1)wO

25 J=O
1 Int
2 Ir-(IGTPw)GI2 T'i

GO Tfl (10911)041
11 IFfL3UT(I?*P4L*Lf'tT(j));. M,

GO TO) 12
10 19 (LOUT(I)*N1F@LPJf.J2))GO In .1
12 1F'AL1K.t.J,~TO

IP(LA8(M)eF0.1)Gl Tf) ~
200 CONTINUE

DIRPI)3

GO TO (2t922).?
21 IF(L1N(I)eE0*L0UT(jI))G0 TO -

GO TO 3
22 IF(L1N(1)*EQ.LtN4J1))GO TO P
3 331+1

Go TO 2

5 IF(I*GT.w4)GO TO 7
6O TO (13914).141

14 !~(LJN(I).NE*LOUT(J21)GO TO S'
GO TO IS

13 IW(LIN(T)eN0~LJN4JT)rO T1
15 IF(B3ASE(1,%.)*NF*1)G3 TO

DO 300 4=19m
Ift(LA8(N)wE0*I)Gqj TO 6

300 CONTINtFE
OIRPCI)--I

LA9(j)wJ

GO TO (239241,942
P3 ZPr(LOUT(I)*'o.L0UT(J))Gt, TO 9

Gn TO 6
24 I7(LOU1T.I)EQLIN(Jt)GO TM ~
6 1 a +3I

6O TO 5
7 L4..*I

J?mLASICL)

IF (0 .5(2),rO.-I)Y 12
GO TO I

GO To 16

DELT*(1 sKI
IA j3w9pR(JJ

lF(0TFP(j3).F0*.)G~O TO 17
I 0(OEL?*.T9FfJ3 K))GO TO ip,

GO TO 13M

OE-LTwC(J3)-F TO is

to CALL PIv']T

- 111 -

References

[B1] Balinski, M.L., "An Algorithm for Finding All the Vertices of Convex

Polyhedral Sets", J. Soc. Indust. Appl. Math., Vol. 9, No. 1,

March 1961.

(B2] Bloom, J., "A Program for Chernikova's Algorithm", Electronic Systems

Laboratory, M.I.T., March 1976.

[B3] Bazaraa, M.S. and Jarvis, J.J., Linear Programming and Network Flows,

John Wiley & Sons, 1977.

(Chl] Chernikova, N.V., "Algorithm for Finding a General Formula for the Non-

negative Solutions of a System of Linear Equations", U.S.S.R. Com-

putational Mathematics and Mathematical Physics, 4, pp. 151-158,

1964.

[Ch2] Chernikova, N.V., "Algorithm for Finding a General Formula for the Non-

negative Solutions of a System of Linear Inequalities", U.S.S.R.

Computational Mathematics and Mathematical Physics, 5, pp

pp. 228-233, 1965.

[El] Even, S., Algorithmic Combinatorics, The MacMillan Company, N.Y., 1973.

(Fl] Ford, L.R., Jr., and Fulkerson, D.R., 'Maximal Flow Through a Network",

Canadian J. Math., 8 (3), pp. 339-404, 1950.

[HI] Hu, T.C., Integer Programming and Network Flows, Addison-Wesley, 1970.

[LI] Luenberger, D.G., Introduction to Linear and Nonlinear Progranming,

Addison-Wesley, 1973.

[Ml] Moss, F.H., "The Application of Optimal Control Theory to Dynamic Rout-
ing in Data Communication Networks", Ph.D. Dissertation, Massa-

chusetts Inst. Technol., Cambridge, 1976.

(M] Moss, F.H. and Segall, A., "An Optimal C6ntrol Approach to Dynamic

Routing in Data tcmunication Networks, Part I: Principles",

E.E. Pub. No. 312, Technion - Israel Inst. Technol., Sept. 1977.

- 112 -

[M31 Nbss, F.H. and Segall, A., "An Optimal Control Approach to Dynamic Rout-

ing in Data Commication Networks, Part II: Geometrical Interpreta-
tion", E.E. Pub. No. 319. Technion - Israel Inst. Technol., Jan. 1978.

[M4] Mattheiss, T.H., "An Algorithm for Determining Irrelevant Constraints
and all the Vertices in Systems of Linear Inequalities", Oper-
tions Research, Vol. 21, No. 1, 247, Jan.-Feb. 1973.

[RI] Rubin, D.C., "Vertex Generation and Cardinality Linear Programs", Opera
tions Research, 23, pp. SSS-564, 1975.

(S1] Segall, A., '"he Modelling of Adaptive Routing in Data Commication
Networks", IEEE Trans. on Com., CCM-2S, No. 1, pp. 85-95,
January 1977.

7.-

ACKNOWLEDGEMENT

The'authors would like to thank Dr. F.H. Moss for stimulat-

ing discussions regarding the first stages of this work.

